Viable prokaryotes have been detected in basal sediments beneath the few Northern Hemisphere glaciers that have been sampled for microbial communities. However, parallel studies have not previously been conducted in the Southern Hemisphere, and subglacial environments in general are a new and underexplored niche for microbes. Unfrozen subglacial sediments and overlying glacier ice samples collected aseptically from the Fox Glacier and Franz Josef Glacier in the Southern Alps of New Zealand now have been shown to harbor viable microbial populations. Total direct counts of 2-7 x 10(6) cells g(-1) dry weight sediment were observed, whereas culturable aerobic heterotrophs ranged from 6-9 x 10(5) colony-forming units g(-1) dry weight. Viable counts in the glacier ice typically were 3-4 orders of magnitude smaller than in sediment. Nitrate-reducing and ferric iron-reducing bacteria were detected in sediment samples from both glaciers, but were few or below detection limits in the ice samples. Nitrogen-fixing bacteria were detected only in the Fox Glacier sediment. Restriction fragment analysis of 16S rDNA amplified from 37 pure cultures of aerobic heterotrophs capable of growth at 4 degrees C yielded 23 distinct groups, of which 11 were identified as beta-Proteobacteria. 16S rDNA sequences from representatives of these 11 groups were analyzed phylogenetically and shown to cluster with bacteria such as Polaromonas vacuolata and Rhodoferax antarcticus, or with clones obtained from permanently cold environments. Chemical analysis of sediment and ice samples revealed a dilute environment for microbial life. Nevertheless, both the sediment samples and one ice sample demonstrated substantial aerobic mineralization of 14C-acetate at 8 degrees C, indicating that sufficient nutrients and viable psychrotolerant microbes were present to support metabolism. Unfrozen subglacial sediments may represent a significant global reservoir of biological activity with the potential to influence glacier meltwater chemistry.
Data from six sites in Victoria Land (72-77ºS) investigating co-variation in soil communities (microbial and invertebrate) with biogeochemical properties showthe influence of soil properties on habitat suitability varied among local landscapes as well as across climate gradients. Species richness of metazoan invertebrates (Nematoda, Tardigrada and Rotifera) was similar to previous descriptions in this region, though identification of three cryptic nematode species of Eudorylaimus through DNA analysis contributed to the understanding of controls over habitat preferences for individual species. Denaturing Gradient Gel Electrophoresis profiles revealed unexpectedly high diversity of bacteria. Distribution of distinct bacterial communities was associated with specific sites in northern and southern Victoria Land, as was the distribution of nematode and tardigrade species. Variation in soil metazoan communities was related to differences in soil organic matter, while bacterial diversity and community structure were not strongly correlated with any single soil property. There were no apparent correlations between metazoan and bacterial diversity, suggesting that controls over distribution and habitat suitability are different for bacterial and metazoan communities. Our results imply that top-down controls over bacterial diversity mediated by their metazoan consumers are not significant determinants of bacterial community structure and biomass in these ecosystems.
Antarctic exploration and research have led to some significant although localized impacts on the environment. Human impacts occur around current or past scientific research stations, typically located on ice-free areas that are predominantly soils. Fuel spills, the most common occurrence, have the potential to cause the greatest environmental impact in the Antarctic through accumulation of aliphatic and aromatic compounds. Effective management of hydrocarbon spills is dependent on understanding how they impact soil properties such as moisture, hydrophobicity, soil temperature, and microbial activity. Numbers of hydrocarbon-degrading bacteria, typically Rhodococcus, Sphingomonas, and Pseudomonas species for example, may become elevated in contaminated soils, but overall microbial diversity declines. Alternative management practices to the current approach of "dig it up and ship it out" are required but must be based on sound information. This review summarizes current understanding of the extent and effects of hydrocarbon spillage on Antarctic soils; the observed physical, chemical, and biological responses of such soils; and current gaps in knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.