Group fission is an important dispersal mechanism for philopatric adults. In Cypress Hills Interprovincial Park, Saskatchewan, tree-roosting big brown bats (Eptesicus fuscus) exhibit fission-fusion roosting behaviour. During 2004During -2007, the majority of females previously resident to roosting area 1 (RA1) moved to a new roosting area (RA4). We examined how genetic relationships, inferred from data for microsatellite loci and mitochondrial DNA, influenced new roost area (RA) selection during 2006 when colony members were split between the RAs. We found that females who moved to RA4 had higher average relatedness than those that remained in RA1. We found that nearly all females belonging to matrilines with high average relatedness moved to RA4 while females from matrilines with low average relatedness were split between the two RAs. These results suggest that closely related maternal kin preferentially move to new RAs. However, daily roosting preferences within a RA are not based on genetic relationships probably because daily roosting associations between kin and non-kin are used to ensure adequate roost group size. Studying the effects of kinship on the fission and movements of groups not only enhances our understanding of social behaviour and population genetics but also informs conservation decisions.
Diabetes mellitus is a systemic disease associated with a deficiency of insulin production or action. Diabetic patients have an increased susceptibility to infection with the urinary tract being the most common site of infection. Recent studies suggest that Ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that plays an important role in protecting the urinary tract from bacterial insult. The impact of diabetes on RNase 7 expression and function are unknown. Here, we investigate the effects of insulin on RNase 7. Using human urine specimens, we measured urinary RNase 7 concentrations in healthy control patients and insulin-deficient type 1 diabetics before and after starting insulin therapy. Compared to controls, diabetic patients had suppressed urinary RNase 7 concentrations, which increased with insulin. Using primary human urothelial cells, we explored the mechanisms by which insulin induces RNase 7. Insulin induces RNase 7 production via the phosphatidylinositide 3-kinase signaling pathway (PI3K/AKT) to shield urothelial cells from uropathogenic E. coli. In contrast, we show that uropathogenic E. coli suppresses PI3K/AKT and RNase 7. Together, these results indicate that insulin and PI3K/AKT signaling are essential for RNase 7 expression. They also suggest that increased infection risks in diabetic patients may be secondary to suppressed RNase 7 production. These data may provide unique insight into novel UTI therapeutic strategies in at risk populations.
BackgroundThere has been considerable research on rodent ultrasound in the laboratory and these sounds have been well quantified and characterized. Despite the value of research on ultrasound produced by mice in the lab, it is unclear if, and when, these sounds are produced in the wild, and how they function in natural habitats.ResultsWe have made the first recordings of ultrasonic vocalizations produced by two free-living species of mice in the genus Peromyscus (P. californicus and P. boylii) on long term study grids in California. Over 6 nights, we recorded 65 unique ultrasonic vocalization phrases from Peromyscus. The ultrasonic vocalizations we recorded represent 7 different motifs. Within each motif, there was considerable variation in the acoustic characteristics suggesting individual and contextual variation in the production of ultrasound by these species.ConclusionThe discovery of the production of ultrasonic vocalizations by Peromyscus in the wild highlights an underappreciated component in the behavior of these model organisms. The ability to examine the production of ultrasonic vocalizations in the wild offers excellent opportunities to test hypotheses regarding the function of ultrasound produced by rodents in a natural context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.