The polar regions have been attracting more and more attention in recent years, fueled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with fewer in situ observations, and with numerous local physical processes that are less well represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere–sea ice–ocean models, even for short-term prediction; and insight into polar–lower-latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting communites will work together with stakeholders in a period of intensive observing, modeling, prediction, verification, user engagement, and educational activities.
Significant attention has focused on the potential for increased shipping activity driven by recently observed declines in Arctic sea ice cover. In this study, we describe the first coupled spatial analysis between shipping activity and sea ice using observations in the Canadian Arctic over the 1990–2015 period. Shipping activity is measured by using known ship locations enhanced with a least cost path algorithm to generate ship tracks and quantified by computing total distance traveled in kilometers. Statistically significant increases in shipping activity are observed in the Hudson Strait (150–500 km traveled yr−1), the Beaufort Sea (40–450 km traveled yr−1), Baffin Bay (50–350 km traveled yr−1), and regions in the southern route of the Northwest Passage (50–250 km traveled yr−1). Increases in shipping activity are significantly correlated with reductions in sea ice concentration (Kendall's tau up to −0.6) in regions of the Beaufort Sea, Western Parry Channel, Western Baffin Bay, and Foxe Basin. Changes in multiyear ice‐dominant regions in the Canadian Arctic were found to be more influential on changes to shipping activity compared to seasonal sea ice regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.