The standard loss function used to train neural network classifiers, categorical cross-entropy (CCE), seeks to maximize accuracy on the training data; building useful representations is not a necessary byproduct of this objective. In this work, we propose clustering-oriented representation learning (COREL) as an alternative to CCE in the context of a generalized attractive-repulsive loss framework. COREL has the consequence of building latent representations that collectively exhibit the quality of natural clustering within the latent space of the final hidden layer, according to a predefined similarity function. Despite being simple to implement, COREL variants outperform or perform equivalently to CCE in a variety of scenarios, including image and news article classification using both feed-forward and convolutional neural networks. Analysis of the latent spaces created with different similarity functions facilitates insights on the different use cases COREL variants can satisfy, where the Cosine-COREL variant makes a consistently clusterable latent space, while Gaussian-COREL consistently obtains better classification accuracy than CCE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.