Most known porphyry Cu deposits formed in the Phanerozoic and are exclusively associated with moderately oxidized, sulfur-rich, hydrous arc-related magmas derived from partial melting of the asthenospheric mantle metasomatized by slab-derived fluids. Yet, whether similar metallogenic processes also operated in the Precambrian remains obscure. Here we address the issue by investigating the origin, fO2, and S contents of calc-alkaline plutonic rocks associated with the Haib porphyry Cu deposit in the Paleoproterozoic Richtersveld Magmatic Arc (southern Namibia), an interpreted mature island-arc setting. We show that the ca. 1886–1881 Ma ore-forming magmas, originated from a mantle-dominated source with minor crustal contributions, were relatively oxidized (1‒2 log units above the fayalite-magnetite-quartz redox buffer) and sulfur-rich. These results indicate that moderately oxidized, sulfur-rich arc magma associated with porphyry Cu mineralization already existed in the late Paleoproterozoic, probably as a result of recycling of sulfate-rich seawater or sediments from the subducted oceanic lithosphere at that time.
Most known porphyry Cu ± Au deposits are associated with moderately oxidized and sulfur-rich, calc-alkaline to mildly alkalic arc-related magmas in the Phanerozoic. In contrast, sodium-enriched tonalite-trondhjemite-granodiorite-diorite (TTG) magmas predominant in the Archean are hypothesized to be unoxidized and sulfur-poor, which together preclude porphyry Cu deposit formation. Here, we test this hypothesis by interrogating the causative magmas for the ~2.7 Ga TTG-related Côté Gold, St-Jude, and Clifford porphyry-type Cu ± Au deposit settings in the Neoarchean southern Abitibi subprovince. New and previously published geochronological results constrain the age of emplacement of the causative magmas at ~2.74 Ga, ~2.70 Ga, and ~2.69 Ga, respectively. The dioritic and trondhjemitic magmas associated with Côté Gold and St-Jude evolved along a plagioclase-dominated fractionation trend, in contrast to amphibole-dominated fractionation for tonalitic magma at Clifford. Analyses of zircon grains from the Côté Gold, St-Jude, and Clifford igneous rocks yielded εHf(t) ± SD values of 4.5 ± 0.3, 4.2 ± 0.6, and 4.3 ± 0.4, and δ18O ± SD values of 5.40 ± 0.11 ‰, 3.91 ± 0.13 ‰, and 4.83 ± 0.12 ‰, respectively. These isotopic signatures indicate that although these magmas are mantle-sourced with minimal crustal contamination, for the St-Jude and Clifford settings the magmas or their sources may have undergone variable alteration by heated seawater or meteoric fluids. Primary barometric minerals (i.e., zircon, amphibole, apatite, and magnetite-ilmenite) that survived variable alteration and metamorphism (up to greenschist facies) were used for estimating fO2 of the causative magmas. Estimation of magmatic fO2 values, reported relative to the fayalite-magnetite-quartz buffer as ΔFMQ, using zircon geochemistry indicate that the fO2 values of the St-Jude, Côté Gold, and Clifford magmas increase from ΔFMQ -0.3 ± 0.6, ΔFMQ +0.8 ± 0.4, to ΔFMQ +1.2 ± 0.4, respectively. In contrast, amphibole chemistry yielded systematically higher fO2 values of ΔFMQ +1.6 ± 0.3 and ΔFMQ +2.6 ± 0.1 for Côté Gold and Clifford, respectively, which are consistent with previous studies that indicate amphibole may overestimate the fO2 of intrusive rocks by up to one log unit. Micro X-ray absorption near edge structure (μ-XANES) spectrometric determination of sulfur (i.e., S6+/ΣS) in primary apatite yielded ≥ΔFMQ -0.3 and ΔFMQ +1.4–1.8 for the St-Jude and Clifford, respectively. The magnetite-ilmenite mineral pairs from the Clifford tonalite yielded ΔFMQ +3.3 ± 1.3 at equilibrium temperatures of 634 ± 21 °C, recording the redox state of the late stage of magma crystallization. Electron probe microanalyses revealed that apatite grains from Clifford are enriched in S (up to 0.1 wt. %) relative to those of Côté Gold and St-Jude (below the detection limit), which is attributed to either relatively oxidized or sulfur-rich features of the Clifford tonalite. We interpret these results to indicate the deposits at Côté Gold and Clifford formed from mildly (~ΔFMQ +0.8 ± 0.4) to moderately (~ΔFMQ +1.5) oxidized magmas where voluminous early sulfide saturation was probably limited, whereas the St-Jude deposit represents a rare case whereby the ingress of externally derived hydrothermal fluids facilitated metal fertility in a relatively reduced magma chamber (~ΔFMQ +0). Furthermore, we conclude that variable modes of formation for these deposits and, in addition, the apparent rarity of porphyry-type Cu-Au deposits in the Archean may be attributed to either local restriction of favorable metallogenic conditions, and/or preservation, or an exploration bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.