This work aimed to produce mechanical components of nickel–titanium shape memory alloys using investment casting processes. Then, in order to validate processing, different designs of nickel–titanium shape memory alloy components as staple implants, Belleville springs, meshes, helical springs, screws and hexagonal honeycombs were produced and submitted to thermal and mechanical characterization. Thermoelastic martensitic transformation of the nickel–titanium shape memory alloy parts was determined by differential scanning calorimetry and electrical resistance with temperature, while the superelastic behaviour was verified by cyclic tensile and compression tests. It has been demonstrated that the employed investment casting processes are suitable to manufacture nickel–titanium shape memory alloy mechanical components with simple and complicated designs as well as functional properties related to phase transformation and superelasticity.
Shape memory alloy (SMA) helical springs are special mechanical parts that require a previous evaluation of its behavior for application. Therefore, in this paper thermal and mechanical behaviour of superelastic Ni-Ti SMA helical extension springs manufactured by investment casting (IC) are evaluated. Phase transformation temperatures were measured by Electrical Resistance as a function of Temperature (ERT) and Differential Scanning Calorimetry (DSC). Tensile tests were carried out within strain and temperatures ranges. The pitch angle and stiffness of each spring were determined. Results demonstrated that Ni-Ti SMA helical springs produced by IC presented phase transformation corresponding to the superelastic effect (SE). The reversible deformations under tensile test were of the order of 70%. The mechanical behavior as function of temperature revealed a linear relationship between maximum force and spring temperature.
In copper-based shape memory alloys (SMAs), some exceptional phenomena, such as the shape memory effect (SME) or superelasticity (SE), are observable. However, commercial aluminum bronzes, Cu 3 Al-based alloys, do not present these functional properties (SME and/or SE) in their original state. Thus, since one of the main copper-based SMA systems is the Cu-Al-Ni alloy, this paper aims to analyze the modification of these commercial aluminum bronzes to SMA by the addition small amounts of Cu, Al and/or Ni. These modified bronzes were reprocessed by induction melting and injected by centrifugation into a ceramic coating mold. The modifications were made to determine the nominal composition for a Cu-13,0Al-4,0Ni (%wt) SMA. The effectiveness of the modifications was verified by differential scanning calorimetry (DSC) thermal analysis. All modified Cu-Al-Ni bronzes presented DSC peaks of the thermoelastic martensitic phase transformation, showing that SMA behavior was achieved, while the non-modified bronzes revealed no transformation. These results were supported by Vickers hardness (HV), X-ray diffraction (XRD), semi quantitative composition by EDS analysis and optical microscopy.
Shape Memory Alloys (SMA) metallic materials that change their mechanical and physical properties with temperature variation and mechanical loading, surprising engineers and researchers. In this way, one can develop thermomechanical actuators capable, for example, of generating force by blocking the shape recovery or change the natural frequency of a mechanical system by blocking resonance. The processing of these SMA are countless, each one with its specific limitation and particularity. This study aims to evaluate the influence of rapid solidification of a Ni-Ti SMA that is originally manufactured by Vacuum Induction Melting (VIM) and reprocessed by Plasma Melting (PM) followed by injection molding into different metal molds (steel, brass, aluminum and copper). The influence of such a processing is analyzed through Differential Scanning Calorimetry (DSC) and Electrical Resistance as a function of Temperature (ERT) to determine the effects on transformation temperatures. The results demonstrate that by using the copper mold one can provide greater uniformity of the material properties. Thus, there is the possibility of obtaining different kinds of SMA mini-actuators by PM injection in a copper mold and that includes different shapes and sizes that can be studied further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.