doi: medRxiv preprint NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
BackgroundDepression is a clinically heterogeneous disorder. Previous large-scale genetic studies of depression have explored genetic risk factors of depression case–control status or aggregated sums of depressive symptoms, ignoring possible clinical or genetic heterogeneity.MethodsWe analyse data from 148 752 subjects of white British ancestry in the UK Biobank who completed nine items of a self-rated measure of current depressive symptoms: the Patient Health Questionnaire (PHQ-9). Genome-Wide Association analyses were conducted for nine symptoms and two composite measures. LD Score Regression was used to calculate SNP-based heritability (h2 SNP) and genetic correlations (rg) across symptoms and to investigate genetic correlations with 25 external phenotypes. Genomic structural equation modelling was used to test the genetic factor structure across the nine symptoms.ResultsWe identified nine genome-wide significant genomic loci (8 novel), with no overlap in loci across symptoms. h2 SNP ranged from 6% (concentration problems) to 9% (appetite changes). Genetic correlations ranged from 0.54 to 0.96 (all p < 1.39 × 10−3) with 30 of 36 correlations being significantly smaller than one. A two-factor model provided the best fit to the genetic covariance matrix, with factors representing ‘psychological’ and ‘somatic’ symptoms. The genetic correlations with external phenotypes showed large variation across the nine symptoms.ConclusionsPatterns of SNP associations and genetic correlations differ across the nine symptoms, suggesting that current depressive symptoms are genetically heterogeneous. Our study highlights the value of symptom-level analyses in understanding the genetic architecture of a psychiatric trait. Future studies should investigate whether genetic heterogeneity is recapitulated in clinical symptoms of major depression.
IMPORTANCE Genetic studies with broad definitions of depression may not capture genetic risk specific to major depressive disorder (MDD), raising questions about how depression should be operationalized in future genetic studies.OBJECTIVE To use a large, well-phenotyped single study of MDD to investigate how different definitions of depression used in genetic studies are associated with estimation of MDD and phenotypes of MDD, using polygenic risk scores (PRSs). DESIGN, SETTING, AND PARTICIPANTSIn this case-control polygenic risk score analysis, patients meeting diagnostic criteria for a diagnosis of MDD were drawn from the Australian Genetics of Depression Study, a cross-sectional, population-based study of depression, and controls and patients with self-reported depression were drawn from QSkin, a population-based cohort study. Data analyzed herein were collected before September 2018, and data analysis was conducted from September 10, 2020, to January 27, 2021.MAIN OUTCOME AND MEASURES Polygenic risk scores generated from genome-wide association studies using different definitions of depression were evaluated for estimation of MDD in and within individuals with MDD for an association with age at onset, adverse childhood experiences, comorbid psychiatric and somatic disorders, and current physical and mental health. RESULTSParticipants included 12 106 (71% female; mean age, 42.3 years; range, 18-88 years) patients meeting criteria for MDD and 12 621 (55% female; mean age, 60.9 years; range, 43-87 years) control participants with no history of psychiatric disorders. The effect size of the PRS was proportional to the discovery sample size, with the largest study having the largest effect size with the odds ratio for MDD (1.75; 95% CI, 1.73-1.77) per SD of PRS and the PRS derived from ICD-10 codes documented in hospitalization records in a population health cohort having the lowest odds ratio (1.14; 95% CI, 1.12-1.16). When accounting for differences in sample size, the PRS from a genome-wide association study of patients meeting diagnostic criteria for MDD and control participants was the best estimator of MDD, but not in those with self-reported depression, and associations with higher odds ratios with childhood adverse experiences and measures of somatic distress.CONCLUSIONS AND RELEVANCE These findings suggest that increasing sample sizes, regardless of the depth of phenotyping, may be most informative for estimating risk of depression. The next generation of genome-wide association studies should, like the Australian Genetics of Depression Study, have both large sample sizes and extensive phenotyping to capture genetic risk factors for MDD not identified by other definitions of depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.