The Pawnee M5.8 earthquake is the largest event in Oklahoma instrument recorded history. It occurred near the edge of active seismic zones, similar to other M5+ earthquakes since 2011. It ruptured a previously unmapped fault and triggered aftershocks along a complex conjugate fault system. With a high-resolution earthquake catalog, we observe propagating foreshocks leading to the mainshock within 0.5 km distance, suggesting existence of precursory aseismic slip. At approximately 100 days before the mainshock, two M ≥ 3.5 earthquakes occurred along a mapped fault that is conjugate to the mainshock fault. At about 40 days before, two earthquakes clusters started, with one M3 earthquake occurred two days before the mainshock. The three M ≥ 3 foreshocks all produced positive Coulomb stress at the mainshock hypocenter. These foreshock activities within the conjugate fault system are near-instantaneously responding to variations in injection rates at 95% confidence. The short time delay between injection and seismicity differs from both the hypothetical expected time scale of diffusion process and the long time delay observed in this region prior to 2016, suggesting a possible role of elastic stress transfer and critical stress state of the fault. Our results suggest that the Pawnee earthquake is a result of interplay among injection, tectonic faults, and foreshocks.
The rapidly increased earthquake rate in the central United States has been linked with wastewater injection. While the overall understanding appears clear at large scales, the interaction between injection and faulting at smaller scales within individual sequences is still not clear. For an earthquake sequence in central Oklahoma, we conduct finer‐scale analysis of the spatiotemporal evolution of seismicity and pore pressure modeling. The pore pressure modeling suggests that nearby wells show much stronger correlation with earthquake sequence evolution. Detailed temporal analysis found correlation between earthquake rate, seismic moment, and injection rates from wells in close proximity. However, the observed maximum magnitude (Mmax) is about 1 order of magnitude smaller than expected based on a theoretical relationship between Mmax and cumulative volume. This discrepancy may point toward additional parameters, such as fault size and stress, which influence Mmax. The lower Mmax is consistent with the truncated Gutenberg‐Richter distribution observed from matched filter detected catalog. Overall, the detailed observations suggest that it is possible to resolve relationships between individual disposal wells and induced earthquake sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.