Lippia schaueriana Mart. (Verbenaceae) is an endemic species of Caatinga with a restricted distribution to the states of Bahia and Pernambuco, which presents itself as a potential source of raw material for extraction of essential oil and exploitation by the chemical and pharmaceutical industries. Considering that there are no reports in the literature of research carried out with this species, this paper aimed to establish—for the first time—the chemical composition of its essential oil. The essential oil of the dry leaves at room temperature was obtained by hydrodistillation after 3 h of extraction and the phytochemical analyzes were done by gas chromatography coupled to mass spectrometry (GC/MS). The main compounds found in the oil of leaves were piperitone oxide (51.25%), caryophyllene (17.76%), limonene (8.06%), spathulenol (6.63%), and piperitone (2.90%). The piperitone oxide is a compound described in the literature that shows antinociceptive, cardiovascular, analgesic, and relaxing activities, as well as fungicidal and insecticidal effect, which gives it an interesting potential for the alternative control of agricultural pests.
The evaluation of accessions in a germplasm bank is essential for determining the potential parents in conservation programs, especially for native trees. This study aimed to determine the genetic diversity among 68 Amburana cearensis genotypes from different locations in the state of Pernambuco, Brazil. Their genetic patterns were evaluated by Inter Simple Sequence Repeat (ISSR) molecular markers and genetic divergence was evaluated through multivariate analyses using different clustering methods. The optimization method used (Tocher) was in agreement with all the hierarchical models used, in which clustering of the genotypes occurred similarly, specifically for the accession BB116, which is an important genetic material to be preserved and studied. Among the various hierarchical methods applied, the Average Linkage method exhibited higher discrimination power, allowing identification of a larger number of divergent groups, thus implying wide genetic diversity among A. cearensis accessions.
Aims
To isolate and characterize non-rhizobial nodule-associated bacteria (NAB) from cowpea root-nodules regarding their performance of plant-growth-promoting mechanisms and their ability to enhance cowpea growth and symbiosis when co-inoculated with bradyrhizobia.
Methods and Results
Sixteen NAB were isolated, identified, and in vitro evaluated for plant growth promotion traits. The ability to promote cowpea growth was analyzed when co-inoculated with Bradyrhizobium pachyrhizi BR 3262 in sterile and non-sterile substrates. The 16S rRNA gene sequences analysis revealed that NAB belonged to the genera Chryseobacterium (4), Bacillus (3), Microbacterium (3), Agrobacterium (1), Escherichia (1), Delftia (1), Pelomonas (1), Sphingomonas (1), and Staphylococcus (1). All strains produced different amounts of auxin siderophores and formed biofilms. Twelve out of the 16 strains carried the nifH, a gene associated with nitrogen fixation. Co-inoculation of NAB (ESA 424 and ESA 29) with Bradyrhizobium pachyrhizi BR 3262 significantly promoted cowpea growth, especially after simultaneous inoculation with the three strains.
Conclusions
NAB are efficient cowpea growth promoters and can improve the efficiency of the symbiosis between cowpea and the N2-fixing microsymbiont B. pachyrhizi BR 3262, mainly under a specific triple microbial association.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.