Background Human granulosa-lutein cells (hGLCs) amply express sirtuin-1 (SIRT1), a NAD + -dependent deacetylase that is associated with various cellular functions. SIRT1 was shown to elevate cAMP on its own and additively with human chorionic gonadotropin (hCG), it is therefore interesting to examine if SIRT1 affects other essential hGLC functions. Methods Primary hGLCs, obtained from the follicular aspirates of women undergoing IVF and SV40-transfected, immortalized hGLCs (SVOG cells), were used. Primary cells were treated with SIRT1 specific activator SRT2104, as well as hCG or their combination. Additionally, siRNA-targeting SIRT1 construct was used to silence endogenous SIRT1 in SVOG cells. PTGS2, EREG, VEGFA and FGF2 expression was determined using quantitative polymerase chain reaction (qPCR). Apoptotic and necroptotic proteins were determined by specific antibodies in western blotting. Cell viability/apoptosis was determined by the XTT and flow cytometry analyses. Data were analyzed using student t-test or Mann–Whitney U test or one-way ANOVA followed by Tukey HSD post hoc test. Results In primary and immortalized hGLCs, SRT2104 significantly upregulated key ovulatory and angiogenic genes: PTGS2, EREG, FGF2 and VEGFA, these effects tended to be further augmented in the presence of hCG. Additionally, SRT2104 dose and time-dependently decreased viable cell numbers. Flow cytometry of Annexin V stained cells confirmed that SIRT1 reduced live cell numbers and increased late apoptotic and necrotic cells. Moreover, we found that SIRT1 markedly reduced anti-apoptotic BCL-XL and MCL1 protein levels and increased cleaved forms of pro-apoptotic proteins caspase-3 and PARP. SIRT1 also significantly induced necroptotic proteins RIPK1 and MLKL. RIPK1 inhibitor, necrostatin-1 mitigated SIRT1 actions on RIPK1 and MLKL but also on cleaved caspase-3 and PARP and in accordance on live and apoptotic cells, implying a role for RIPK1 in SIRT1-induced cell death. SIRT1 silencing produced inverse effects on sorted cell populations, anti-apoptotic, pro-apoptotic and necroptotic proteins, corroborating SIRT1 activation. Conclusions These findings reveal that in hGLCs, SIRT1 enhances the expression of ovulatory and angiogenic genes while eventually advancing cell death pathways. Interestingly, these seemingly contradictory events may have occurred in a cAMP-dependent manner.
Background Maintenance of the corpus luteum (CL) beyond the time of luteolysis is essential for establishing pregnancy. Identifying the distinct features of early pregnancy CL remains unresolved, hence we analyzed here the transcriptome of CL on day 18 pregnant (P) and non-pregnant (NP) cows using RNA-Seq. CL of P cows expressed ISGs, verifying exposure to the pregnancy recognition signal, interferon-tau (IFNT), whereas the CL of NP cows had elevated luteal progesterone levels, implying that luteolysis had not yet commenced. Results The DEGs, IPA, and metascape canonical pathways, along with GSEA analysis, differed markedly in the CL of P cows from those of NP cows, at the same day of the cycle. Both metascape and IPA identified similar significantly enriched pathways such as interferon alpha/beta, sonic hedgehog pathway, TNFA, EDN1, TGFB1, and PDGF. However, type-1 interferon and sonic hedgehog pathways were positively enriched whereas most of the enriched pathways were downregulated in the P compared to NP samples. Thirty-four % of these pathways are known to be elevated by PGF2A during luteolysis. Notably, selective DEGs in luteinized granulosa cells were modulated by IFNT in vitro in a similar manner to their regulation in the CL of P cows. Conclusion This study unraveled the unique transcriptomic signature of the IFNT-exposed, early pregnancy CL, highlighting the abundance of downregulated pathways known to be otherwise induced during luteolysis. These and IFNT-regulated in vitro pregnancy-specific DEGs suggest that IFNT contributes to the characteristics and maintenance of early pregnancy CL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.