In Service Oriented Architecture (SOA) web services plays important role. Web services are web application components that can be published, found, and used on the Web. Also machine-to-machine communication over a network can be achieved through web services. Cloud computing and distributed computing brings lot of web services into WWW. Web service composition is the process of combing two or more web services to together to satisfy the user requirements. Tremendous increase in the number of services and the complexity in user requirement specification make web service composition as challenging task. The automated service composition is a technique in which Web Service Composition can be done automatically with minimal or no human intervention. In this paper we propose a approach of web service composition methods for large scale environment by considering the QoS Parameters. We have used stacked autoencoders to learn features of web services. Recurrent Neural Network (RNN) leverages uses the learned features to predict the new composition. Experiment results show the efficiency and scalability. Use of deep learning algorithm in web service composition, leads to high success rate and less computational cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.