The authentication of virgin olive oil samples requires usually the use of sophisticated and very expensive analytical techniques, so there is a need for fast and inexpensive analytical techniques for use in a quality control methodology. Virgin olive oils present an intense fluorescence spectra. Synchronous excitation-emission fluorescence spectroscopy (SEEFS) was assessed for origin determination of virgin olive oil samples from five French registered designation of origins (RDOs) (Nyons, Vallée des Baux, Aix-en-Provence, Haute-Provence, and Nice). The spectra present bands between 600 and 700 nm in emission due to chlorophylls a and b and pheophytins a and b. The bands between 275 and 400 nm in emission were attributed to alpha-, beta-, and gamma-tocopherols and to phenolic compounds, which characterize the virgin olive oils compared to other edible oils. The chemometric treatment (PLS1) of synchronous excitation-emission fluorescence spectra allows one to determine the origin of the oils from five French RDOs (Baux, Aix, Haute-Provence, Nice, and Nyons). Results were quite satisfactory, despite the similarity between two denominations of origin (Baux and Aix) that are composed by some common cultivars (Aglandau and Salonenque). The interpretation of the regression coefficients shows that RDOs are correlated to chlorophylls, pheophytins, tocopherols, and phenols compounds, which are different for each origin. SEEFS is part of a global analytic methodology that associates spectroscopic and chromatographic techniques. This approach can be used for traceability and vindicates the RDOs.
An approach for automating the determination of the number of components in orthogonal signal correction (OSC) has been devised. In addition, a novel principal component OSC (PC-OSC) is reported that builds softer models for removing background from signals and is much faster than the partial least-squares (PLS) based OSC algorithm. These signal correction methods were evaluated by classifying fused near- and mid-infrared spectra of French olive oils by geographic origin. Two classification methods, partial least-squares-discriminant analysis (PLS-DA) and a fuzzy rule-building expert system (FuRES), were used to evaluate the signal correction of the fused vibrational spectra from the olive oils. The number of components was determined by using bootstrap Latin partitions (BLPs) in the signal correction routine and maximizing the average projected difference resolution (PDR). The same approach was used to select the number of latent variables in the PLS-DA evaluation and perfect classification was obtained. Biased PLS-DA models were also evaluated that optimized the number of latent variables to yield the minimum prediction error. Fuzzy or soft classification systems benefit from background removal. The FuRES prediction results did not differ significantly from the results that were obtained using either the unbiased or biased PLS-DA methods, but was an order of magnitude faster in the evaluations when a sufficient number of PC-OSC components were selected. The importance of bootstrapping was demonstrated for the automated OSC and PC-OSC methods. In addition, the PLS-DA algorithms were also automated using BLPs and proved effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.