Due to the high genetic heterogeneity of hearing loss, current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of hearing loss. As one of its major tasks, our Expert Panel has adapted the ACMG/AMP guidelines for the interpretation of sequence variants in hearing loss genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP hearing loss rules. Three rules remained unchanged, four rules were removed, and the remaining twenty-one rules were specified. These rules were further validated and refined using a pilot set of 51 variants assessed by curators and expert opinion. Of the 51 variants evaluated in the pilot, 37% (19/51) changed category based upon application of the expert panel specified rules and/or aggregation of evidence across laboratories. These hearing loss-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with hearing loss.
Project TeamGenomic sequencing provides many opportunities in newborn clinical care, but the challenges of interpreting and reporting newborn genomic sequencing (nGS) results need to be addressed for its broader and effective application. The BabySeq Project is a pilot randomized clinical trial that explores the medical, behavioral, and economic impacts of nGS in well newborns and those admitted to a neonatal intensive care unit (NICU). Here we present childhood-onset and actionable adult-onset disease risk, carrier status, and pharmacogenomics findings from nGS of 159 newborns in the BabySeq Project. nGS revealed a risk of childhood-onset disease in 15/159 (9.4%) newborns; none of the disease risks were anticipated based on the infants' known clinical or family histories. nGS also revealed actionable adult-onset disease risk in 3/85 (3.5%) newborns whose parents consented to receive this information. Carrier status for recessive diseases and pharmacogenomics variants were reported in 88% and 5% of newborns, respectively. Additional indication-based analyses were performed in 29/32 (91%) NICU newborns and 6/127 (5%) healthy newborns who later had presentations that prompted a diagnostic analysis. No variants that sufficiently explained the reason for the indications were identified; however, suspicious but uncertain results were reported in five newborns. Testing parental samples contributed to the interpretation and reporting of results in 13/159 (8%) newborns. Our results suggest that nGS can effectively detect risk and carrier status for a wide range of disorders that are not detectable by current newborn screening assays or predicted based on the infant's known clinical or family history, and the interpretation of results can substantially benefit from parental testing.
(200 WORD LIMIT)Due to the high genetic heterogeneity of hearing loss, current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants.Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of hearing loss. As one of its major tasks, our Expert Panel has adapted the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) standards and guidelines for the interpretation of sequence variants in hearing loss genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP . CC-BY-ND 4.0 International license It is made available under a was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint (which . http://dx.doi.org/10.1101/313734 doi: bioRxiv preprint first posted online May. 8, 2018; hearing loss rules. Three rules remained unchanged, four rules were removed, and the remaining twenty-one rules were specified. Of the specified rules, four had general recommendations, seven were gene/disease considerations, seven had strength-level specifications, and three rules had both gene/disease and strength-level specifications. These rules were further validated and refined using a pilot set of 51 variants assessed by curators.These hearing loss-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with hearing loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.