he Cancer Genome Atlas project identified 2 groups of endometrioid endometrial cancers (ECs) with high mutation frequency: an ultramutated group (7% of all tumors) that harbored mutations in the exonuclease domain of polymerase e (POLE), and a hypermutated group (28% of tumors) with microsatellite instability (MSI), the majority of which harbored MLH1 promoter methylation. 1 The ultramutated POLE group exhibited an extremely high mutation rate (232 × 10 −6 mutations/Mb) with a unique nucleotide change spectrum of increased C→A transversion frequency, whereas the hypermutated MSI group exhibited mutation rates of 18 × 10 −6 mutations/Mb with variable length of DNA microsatellites due to an underlying deficiency in mismatch DNA repair. [1][2][3] Mismatch DNA repair deficiency induces singlebase mismatches that lead to point mutations in coding regions of genes, as well as insertions or deletions that lead to frame-shift mutations.It has been suggested that hypermutated tumors may harbor more tumor-specific neoantigens and increased amounts of tumor-infiltrating lymphocytes (TILs). 3-7 Therefore, we assessed whether POLE and MSI ECs harbor more neoantigens and TILs than the comparatively hypomutated microsatellitestable (MSS) ECs. Methods Prediction of HLA Type and Neoantigen LoadInference of HLA type was performed using the POLY-SOLVER (polymorphic loci resolver) tool. 5 For prediction of neoantigen load, the Sage Bionetworks' Synapse resource (https://www.synapse.org and Lawrence et al 8 ) and the Net-MHCpan tool (version 2.4) 9 were used (eMethods in the Supplement).IMPORTANCE Immune checkpoint inhibitor therapy has shown benefit in various cancers, but their potential in endometrial cancer (EC) is unknown.OBSERVATIONS Prediction of neoantigen load was performed using sequencing data from the Cancer Genome Atlas data set. Evaluation of tumor-infiltrating lymphocytes (TILs) and PD-1 and PD-L1 expression was performed in 63 patients with EC referred to our institution. The predicted median (range) neoantigen load (predicted neoepitopes per sample
Context.— Perinatal death is an increasingly important problem as the COVID-19 pandemic continues, but the mechanism of death has been unclear. Objective.— To evaluate the role of the placenta in causing stillbirth and neonatal death following maternal infection with COVID-19 and confirmed placental positivity for SARS-CoV-2. Design.— Case-based retrospective clinico-pathological analysis by a multinational group of 44 perinatal specialists from 12 countries of placental and autopsy pathology findings from 64 stillborns and 4 neonatal deaths having placentas testing positive for SARS-CoV-2 following delivery to mothers with COVID-19. Results.— All 68 placentas had increased fibrin deposition and villous trophoblast necrosis and 66 had chronic histiocytic intervillositis, the three findings constituting SARS-CoV-2 placentitis. Sixty-three placentas had massive perivillous fibrin deposition. Severe destructive placental disease from SARS-CoV-2 placentitis averaged 77.7% tissue involvement. Other findings included multiple intervillous thrombi (37%; 25/68) and chronic villitis (32%; 22/68). The majority (19, 63%) of the 30 autopsies revealed no significant fetal abnormalities except for intrauterine hypoxia and asphyxia. Among all 68 cases, SARS-CoV-2 was detected from a body specimen in 16 of 28 cases tested, most frequently from nasopharyngeal swabs. Four autopsied stillborns had SARS-CoV-2 identified in internal organs. Conclusions.— The pathology abnormalities composing SARS-CoV-2 placentitis cause widespread and severe placental destruction resulting in placental malperfusion and insufficiency. In these cases, intrauterine and perinatal death likely results directly from placental insufficiency and fetal hypoxic-ischemic injury. There was no evidence that SARS-CoV-2 involvement of the fetus had a role in causing these deaths.
Human papillomavirus-negative keratinizing vulvar cancers typically harbor TP53 mutations as do their precursors, differentiated vulvar intraepithelial neoplasia. However, atypical verruciform proliferations are also associated with these malignancies and their pathogenesis is poorly understood. This study compared 11 atypical verruciform lesions, including atypical verruciform hyperplasia, vulvar acanthosis with altered differentiation, and verruciform lichen simplex chronicus, with 14 human papillomavirus-negative keratinizing squamous cell carcinomas. Extracted tissue DNA was subjected to targeted massively parallel sequencing of the exonic regions of 300 genes. Eight (73%) and six (55%) of eleven atypical verruciform lesions contained mutations in PIK3CA and ARID2, respectively. No TP53 mutations were identified. Eleven (79%) and five (36%) of fourteen keratinizing squamous cell carcinomas tested contained TP53 and CDKN2A mutations, respectively. Keratinizing squamous cell carcinomas displayed the majority of copy number variations with some variations (7p gain and 8p loss) shared by some cases in both groups. One patient developed atypical verruciform lesions with PIK3CA mutations followed by a keratinizing carcinoma with mutations in both PIK3CA and TP53. This study, for the first time segregates atypical verruciform lesions by virtue of a unique genotype (PIK3CA mutant/TP53 wild type) illustrating an example of progression to a TP53-mutated keratinizing carcinoma. The findings indicate that although PIK3CA mutations are found in <10% of vulvar squamous cell carcinomas, they may be specific for a particular pathway involving atypical verruciform lesions, which could function as either a direct precursor or a risk factor for vulvar squamous cell carcinoma. Given the presence of a molecular signature, we propose the term 'differentiated exophytic vulvar intraepithelial lesion' for this group. Whether they function as direct precursors to a less common form of squamous cell carcinoma will require further study, but carcinomas associated with these lesions might warrant testing for PIK3CA mutations to address this question.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.