In mammals, stress elicits a stereotyped endocrine response that requires an increase in the activity of hypothalamic parvocellular neuroendocrine neurons. The output of these cells is normally constrained by powerful GABA-mediated synaptic inhibition. We found that acute restraint stress in rats released the system from inhibitory synaptic drive in vivo by down-regulating the transmembrane anion transporter KCC2. This manifested as a depolarizing shift in the reversal potential of GABA(A)-mediated synaptic currents that rendered GABA inputs largely ineffective. Notably, repetitive activation of GABA synapses after stress resulted in a more rapid collapse of the anion gradient and was sufficient to increase the activity of neuroendocrine cells. Our data indicate that hypothalamic neurons integrate psychological cues to mount the endocrine response to stress by regulating anion gradients.
Endocannabinoids (eCBs) are ubiquitous retrograde signaling molecules in the nervous system that are recruited in response to robust neuronal activity or the activation of postsynaptic G-protein-coupled receptors. Physiologically, eCBs have been implicated as important mediators of the stress axis and they may contribute to the rapid feedback inhibition of the hypothalamic-pituitary-adrenal axis (HPA) by circulating corticosteroids (CORTs). Understanding the relationship between stress and eCBs, however, is complicated by observations that eCB signaling is itself sensitive to stress. The mechanisms that link stress to changes in synaptic eCB signaling and the impact of these changes on CORT-mediated negative feedback have not been resolved. Here, we show that repetitive immobilization stress, in juvenile male rats, causes a functional downregulation of CB 1 receptors in the paraventricular nucleus of the hypothalamus (PVN). This loss of CB 1 receptor signaling, which requires the activation of genomic glucocorticoid receptors, impairs both activity and receptordependent eCB signaling at GABA and glutamate synapses on parvocellular neuroendocrine cells in PVN. Our results provide a plausible mechanism for how stress can lead to alterations in CORT-mediated negative feedback and may contribute to the development of plasticity of HPA responses.
The essential role of parvocellular neuroendocrine cells (PNCs) in the paraventricular nucleus of the hypothalamus (PVN) is to translate real or perceived challenges into a comprehensive glucocorticoid (GC) hormone response. Synaptic inputs encoding physical and psychological stress engage the hypothalamic-pituitary-adrenal axis (HPA) by increasing PNC activity, and corticotropin-releasing hormone production and release. Following robust recruitment in response to stress, GCs feedback to dampen PNC responses. Here we review the contributions of glutamate and GABA synapses in PVN to the initiation and termination of the stress response. The reliability of HPA responses to a given stress can vary as a function of prior experience. Within this context, we examine possible synaptic correlates that allow this neuroendocrine system to learn and adapt following stress challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.