Glucose-inhibited division (GidA) protein is widely distributed in nature, and is highly conserved among bacteria and eukarya. In our previous study, a gidA mutant was attenuated in both in vitro and in vivo models of Salmonella infection. Furthermore, deletion of gidA resulted in a marked reduction in the expression of many virulence genes and proteins, suggesting a role for GidA in the regulation of Salmonella virulence. In this study, the effect of different environmental conditions (glucose, EDTA, and pH 5) on GidA expression in Salmonella was examined. Transcriptional analysis using real-time RT-PCR and a β-galactosidase assay, displayed no differences in gidA transcription and promoter activity in different environmental conditions. Conversely, semiquantitative Western blot analysis revealed a significant increase in the GidA expression in Salmonella when grown under different environmental conditions. Salmonella in vitro virulence assays showed an increased virulence potential in the environmental conditions correlating to the increase in GidA expression. Together, our data indicate that GidA expression is modulated under different environmental conditions which correlate to increased Salmonella in vitro virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.