Abstract. Organic aerosols are key components of the Earth's atmospheric system. The phase state of organic aerosols is known to be a significant factor in determining aerosol reactivity, water uptake and atmospheric lifetime – with wide implications for cloud formation, climate, air quality and human health. Unsaturated fatty acids contribute to urban cooking emissions and sea spray aerosols. These compounds, exemplified by oleic acid and its sodium salt, are surface-active and have been shown to self-assemble into a variety of liquid-crystalline phases upon addition of water. Here we observe a crystalline acid–soap complex in acoustically levitated oleic acid–sodium oleate particles. We developed a synchrotron-based simultaneous small-angle and wide-angle X-ray scattering (SAXS and WAXS)–Raman microscopy system to probe physical and chemical changes in the proxy during exposure to humidity and the atmospheric oxidant ozone. We present a spatially resolved structural picture of a levitated particle during humidification, revealing a phase gradient consisting of a disordered liquid crystalline shell and crystalline core. Ozonolysis is significantly slower in the crystalline phase compared with the liquid phase, and a significant portion (34 ± 8 %) of unreacted material remains after extensive oxidation. We present experimental evidence of inert surface layer formation during ozonolysis, taking advantage of spatially resolved simultaneous SAXS–WAXS experiments. These observations suggest that atmospheric lifetimes of surface-active organic species in aerosols are highly phase-dependent, potentially impacting climate, urban air quality and long-range transport of pollutants such as polycyclic aromatic hydrocarbons (PAHs).
Abstract. Consider a grade 2 perfect idealwhich is generated by forms of the same degree. Assume that the presentation matrix ϕ is almost linear, that is, all but the last column of ϕ consist of entries which are linear. For such ideals, we find explicit forms of the defining ideal of the Rees algebra R(I). We also introduce the notion of iterated Jacobian duals.
This paper presents the production of mesoporous metals with periodic 3D nanostructures, showing control over the lattice parameter and therefore pore and wire dimensions. The materials have “single diamond” (Fd3m) symmetry and are produced by deposition within a “cubic phase” template of the lipid phytantriol, in a process previously published. The current work shows a mechanism for tuning the nanoscale dimensions of the metal by the addition of a cosurfactant that progressively reduces the lipid bilayer curvature in the template. This swells its lattice parameter and therefore that of the deposited metal. Mesoporous platinum samples were characterized using X-ray scattering, electron microscopy, and electrochemical analysis. The structures exhibit unit cell sizes ranging from 13 to 20 nm, with wire thicknesses from 3.0 to 5.3 nm and estimated pore dimensions from 6.2 to 8.8 nm. The size control in these materials provides a mechanism for control of electrochemical behavior in electrocatalysis and sensors. Furthermore, the use of the templates in other metal and semiconductor materials suggests that size control offers possibilities for metamaterials with designed optoelectronic properties.
Abstract. Organic aerosols are key components of the Earth’s atmospheric system. The phase state of organic aerosols is known to be a significant factor in determining aerosol reactivity, water uptake and atmospheric lifetime – with wide implications for cloud formation, climate, air quality and human health. Unsaturated fatty acids contribute to urban cooking emissions and sea spray aerosols. These compounds, exemplified by oleic acid and its sodium salt, are surface active and have been shown to self-assemble into a variety of liquid-crystalline phases upon addition of water. Here we observe a crystalline acid–soap complex in acoustically levitated oleic acid–sodium oleate particles. We developed a synchrotron-based simultaneous Small-Angle & Wide-Angle X-ray Scattering (SAXS/WAXS)/Raman microscopy system to probe physical and chemical changes in the proxy during exposure to humidity and the atmospheric oxidant ozone. We present a spatially resolved structural picture of a levitated particle during humidification, revealing a phase gradient consisting of a disordered liquid crystalline shell and crystalline core. Ozonolysis is significantly slower in the crystalline phase compared with the liquid phase and a significant portion (34 ± 8 %) of unreacted material remains after extensive oxidation. We present experimental evidence of inert surface layer formation during ozonolysis, taking advantage of spatially resolved simultaneous SAXS/WAXS experiments. These observations suggest atmospheric lifetimes of surface-active organic species in aerosols are highly phase dependent, potentially impacting on climate, urban air quality and long-range transport of pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs).
We present an attractive method for the fabrication of long, straight, highly crystalline, ultrathin platinum nanowires. The fabrication is simply achieved using an inverse hexagonal (H) lyotropic liquid crystal phase of the commercial surfactant phytantriol as a template. A platinum precursor dissolved within the cylindrical aqueous channels of the liquid crystal phase is chemically reduced by galvanic displacement using stainless steel. We demonstrate the production of nanowires using the H phase in the phytantriol/water system which we obtain either by heating to 55 °C or at room temperature by the addition of a hydrophobic liquid, 9- cis-tricosene, to relieve packing frustration. The two sets of conditions produced high aspect nanowires with diameters of 2.5 and 1.7 nm, respectively, at least hundreds of nanometers in length, matching the size of the aqueous channels in which they grow. This versatile approach can be extended to produce highly uniform nanowires from a range of metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.