Mislocalization is a quantitative measure of the inability to locate the positions of individual molecular emitters in plasmon-enhanced super-resolution fluorescence microscopy. It is due to an unfortunate side-effect that scrambles the spatial profile of a molecule’s fluorescence signal when plasmonic nanoantennas are introduced to boost that signal. In this article, we present an understanding of the mislocalization problem in plasmon-enhanced super-resolution fluorescence microscopy based upon a simple and intuitive theoretical model. In particular, we derive an analytic expression for mislocalization and demonstrate explicitly how it depends upon both the macroscopic interference of the coherent emission from molecular and plasmonic emitters and the microscopic dynamics of the coupled system. To derive this expression, we draw upon an analogy to the Fano interference problem and show that the spatial asymmetry in the intensity profile can be encapsulated into a single effective parameter that depends rigorously upon basic system properties. We further elucidate the causes of mislocalization within the context of hybridization between molecular and plasmonic emitters and show analytically how the localization error depends upon the relative separation, orientation, detuning, and polarizability of the emitters. Lastly, we derive a new model-based form of the plasmon-enhanced single-molecule fluorescence image for specified molecular dipole orientations and demonstrate that it significantly outperforms standard Gaussian fitting in locating the position of the molecule.
The unique optical properties of surface plasmon resonances in nanostructured materials have attracted considerable attention, broadly impacting both fundamental research and applied technologies ranging from sensing and optoelectronics to quantum computing. Electron energy-loss spectroscopy (EELS) in the transmission electron microscope has revealed valuable information about the full plasmonic spectrum of these materials with nanoscale spatial resolution. Here we report a novel approach for experimentally accessing the photon-stimulated electron energy-gain and stimulated electron energy-loss responses of individual plasmonic nanoparticles via the simultaneous irradiation of a continuous wave laser and continuous current, monochromated electron probe. Stimulated gain and loss probabilities are equivalent and increase linearly in the low-irradiance range of 0.5 × 108 to 4 × 108 W/m2, above which excessive heating reduces the observed probabilities; importantly in our low-irradiance regime, the photon energy must be tuned in resonance with the plasmon energy for the stimulated gain and loss peaks to emerge. Theoretical modeling based on Fermi’s golden rule elucidates how the plasmon resonantly and coherently shuttles energy quanta between the electron probe and the radiation field and vice versa in stimulated electron energy-loss and -gain events. This study opens a fundamentally new approach to explore the quantum physics of excited-state plasmon resonances that does not rely on high-intensity laser pulses or any modification to the EELS detector.
Facile control of the radiative and nonradiative properties of plasmonic nanostructures is of practical importance to a wide range of applications in the biological, chemical, optical, information, and energy sciences. For example, the ability to easily tune not only the plasmon spectrum but also the degree of coupling to light and/or heat, quality factor, and optical mode volume would aid the performance and function of nanophotonic devices and molecular sensors that rely upon plasmonic elements to confine and manipulate light at nanoscopic dimensions. While many routes exist to tune these properties, identifying new approaches-especially when they are simple to apply experimentally-is an important task. Here, we demonstrate the significant and underappreciated effects that substrate thickness and dielectric composition can have upon plasmon hybridization as well as downstream properties that depend upon this hybridization. We find that even substrates as thin as ∼10 nm can nontrivially mix free-space plasmon modes, imparting bright character to those that are dark (and vice versa) and, thereby, modifying the plasmonic density of states as well as the system's near- and far-field optical properties. A combination of electron energy-loss spectroscopy (EELS) experiment, numerical simulation, and analytical modeling is used to elucidate this behavior in the finite substrate-induced mixing of dipole, quadrupole, and octupole corner-localized plasmon resonances of individual silver nanocubes.
Negative-index metamaterials composed of magnetic plasmon oligomers are actively being investigated for their potential role in optical cloaking, superlensing, and nanolithography applications. A significant improvement to their practicality lies in the ability to function at multiple distinct wavelengths in the visible part of spectrum. Here we utilize the nanometer spatial-resolving power of electron energy-loss spectroscopy to conclusively demonstrate hybridization of magnetic plasmons in oligomer dimers that can achieve this goal. We also show that breaking the dimer's symmetry can induce all-magnetic Fano interferences based solely on the interplay of bright and dark magnetic modes, allowing us to further tailor the system's optical responses. These features are engineered through the design of the oligomer's underlying nanoparticle elements as elongated Ag nanodisks with spectrally isolated long-axis plasmon resonances. The resulting magnetic plasmon oligomers and their hybridized assemblies establish a new design paradigm for optical metamaterials with rich functionality.
Leveraging recent advances in electron energy monochromation and aberration correction, we record the spatially resolved infrared plasmon spectrum of individual tin-doped indium oxide nanocrystals using electron energy-loss spectroscopy (EELS). Both surface and bulk plasmon responses are measured as a function of tin doping concentration from 1−10 atomic percent. These results are compared to theoretical models, which elucidate the spectral detuning of the same surface plasmon resonance feature when measured from aloof and penetrating probe geometries. We additionally demonstrate a unique approach to retrieving the fundamental dielectric parameters of individual semiconductor nanocrystals via EELS. This method, devoid from ensemble averaging, illustrates the potential for electron-beam ellipsometry measurements on materials that cannot be prepared in bulk form or as thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.