We describe new dyrosaurid fossils from three localities in Mali, representing strata of Maastrichtian, Paleocene, and Eocene ages. The fossils significantly extend the temporal and geographic ranges of several known dyrosaurid taxa. Rhabdognathus keiniensis and Chenanisuchus lateroculi are identified for the first time from Maastrichtian sediments. Additional material is referred to Phosphatosaurus gavialoides and, tentatively, the genus Sokotosuchus. These discoveries represent the first occurrence of Chenanisuchus and possibly of Sokotosuchus from Mali. Previously unknown morphological character states are incorporated into existing data matrices, reducing the amount of missing data. Phylogenetic analyses largely corroborate prior hypotheses of dyrosaurid relationships, but indicate a need for new characters to resolve the relationships of certain genera and species. The occurrence of both basal (e.g., Chenanisuchus lateroculi) and highly nested (e.g., Rhabdognathus keiniensis) members of Dyrosauridae on both sides of the K/T boundary indicates that dyrosaurid diversification was well underway by the latest Cretaceous, and that most, if not all dyrosaurid species survived the extinction event. The geology of the Mali's Tilemsi Valley is clarified; some rocks previously assigned to the Iullemmeden Basin actually represent extensions of other basins: the Taoudeni Basin and Gao Trench.
The extant snake fauna has its roots in faunal upheaval occurring across the Paleogene - Neogene transition. On northern continents, this turnover is well established by the late early Miocene. However, this transition is poorly documented on southern landmasses, particularly on continental Africa, where no late Paleogene terrestrial snake assemblages are documented south of the equator. Here we describe a newly discovered snake fauna from the Late Oligocene Nsungwe Formation in the Rukwa Rift Basin of Tanzania. The fauna is small but diverse with eight identifiable morphotypes, comprised of three booids and five colubroids. This fauna includes Rukwanyoka holmani gen. et sp. nov., the oldest boid known from mainland Africa. It also provides the oldest fossil evidence for the African colubroid clade Elapidae. Colubroids dominate the fauna, comprising more than 75% of the recovered material. This is likely tied to local aridification and/or seasonality and mirrors the pattern of overturn in later snake faunas inhabiting the emerging grassland environments of Europe and North America. The early emergence of colubroid dominance in the Rukwa Rift Basin relative to northern continents suggests that the pattern of overturn that resulted in extant faunas happened in a more complex fashion on continental Africa than was previously realized, with African colubroids becoming at least locally important in the late Paleogene, either ahead of or as a consequence of the invasion of colubrids. The early occurrence of elapid snakes in the latest Oligocene of Africa suggests the clade rapidly spread from Asia to Africa, or arose in Africa, before invading Europe.
The Paleogene was a time of high diversity for snakes, and was characterized by some of the largest species known to have existed. Among these snakes were pan-Tethyan marine species of Nigerophiidae and Palaeophiidae. The latter family included the largest sea snake, Palaeophis colossaeus, known from the Trans-Saharan Seaway of Mali during the Eocene. This paper describes new material collected from Malian Trans-Saharan Seaway deposits, including additional material of Palaeophis colossaeus, a new, large species of nigerophiid, Amananulam sanogoi gen. et sp. nov., and a medium-sized snake of indeterminate affinities. The material provides new information on the intracolumnar variation of the vertebral column in Palaeophis colossaeus. We estimate the total length of each species by regression of vertebral measurements on body size. Both Palaeophis colossaeus and Amananulam sanogoi gen. et sp. nov. are the largest or among the largest members of their respective clades. The large size of Tethyan snakes may be indicative of higher temperatures in the tropics than are present today.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.