Pupil size is an easily accessible, noninvasive online indicator of various perceptual and cognitive processes. Pupil measurements have the potential to reveal continuous processing dynamics throughout an experimental trial, including anticipatory responses. However, the relatively sluggish (~2 s) response dynamics of pupil dilation make it challenging to connect changes in pupil size to events occurring close together in time. Researchers have used models to link changes in pupil size to specific trial events, but such methods have not been systematically evaluated. Here we developed and evaluated a general linear model (GLM) pipeline that estimates pupillary responses to multiple rapid events within an experimental trial. We evaluated the modeling approach using a sample dataset in which multiple sequential stimuli were presented within 2-s trials. We found: (1) Model fits improved when the pupil impulse response function (PuRF) was fit for each observer. PuRFs varied substantially across individuals but were consistent for each individual. (2) Model fits also improved when pupil responses were not assumed to occur simultaneously with their associated trial events, but could have non-zero latencies. For example, pupil responses could anticipate predictable trial events. (3) Parameter recovery confirmed the validity of the fitting procedures, and we quantified the reliability of the parameter estimates for our sample dataset. (4) A cognitive task manipulation modulated pupil response amplitude. We provide our pupil analysis pipeline as open-source software (Pupil Response Estimation Toolbox: PRET) to facilitate the estimation of pupil responses and the evaluation of the estimates in other datasets.
Humans have a distinguishing ability for fine motor control that is subserved by a highly evolved cortico-motor neuronal network. The acquisition of a particular motor skill involves a long series of practice movements, trial and error, adjustment and refinement. At the cortical level, this acquisition begins in the parieto-temporal sensory regions and is subsequently consolidated and stratified in the premotor-motor cortex. Task-specific dystonia can be viewed as a corruption or loss of motor control confined to a single motor skill. Using a multimodal experimental approach combining neuroimaging and non-invasive brain stimulation, we explored interactions between the principal nodes of the fine motor control network in patients with writer’s cramp and healthy matched controls. Patients and healthy volunteers underwent clinical assessment, diffusion-weighted MRI for tractography, and functional MRI during a finger tapping task. Activation maps from the task-functional MRI scans were used for target selection and neuro-navigation of the transcranial magnetic stimulation. Single- and double-pulse TMS evaluation included measurement of the input-output recruitment curve, cortical silent period, and amplitude of the motor evoked potentials conditioned by cortico-cortical interactions between premotor ventral (PMv)-motor cortex (M1), anterior inferior parietal lobule (aIPL)-M1, and dorsal inferior parietal lobule (dIPL)-M1 before and after inducing a long term depression-like plastic change to dIPL node with continuous theta-burst transcranial magnetic stimulation in a randomized, sham-controlled design. Baseline dIPL-M1 and aIPL-M1 cortico-cortical interactions were facilitatory and inhibitory, respectively, in healthy volunteers, whereas the interactions were converse and significantly different in writer’s cramp. Baseline PMv-M1 interactions were inhibitory and similar between the groups. The dIPL-PMv resting state functional connectivity was increased in patients compared to controls, but no differences in structural connectivity between the nodes were observed. Cortical silent period was significantly prolonged in writer’s cramp. Making a long term depression-like plastic change to dIPL node transformed the aIPL-M1 interaction to inhibitory (similar to healthy volunteers) and cancelled the PMv-M1 inhibition only in the writer’s cramp group. These findings suggest that the parietal multimodal sensory association region could have an aberrant downstream influence on the fine motor control network in writer’s cramp, which could be artificially restored to its normal function.
Neuroimaging studies suggest that corticolimbic dysfunctions, including increased amygdala reactivity to emotional stimuli and heightened fronto-amygdala coupling, play a central role in the pathophysiology of functional movement disorders (FMD). Transcranial magnetic stimulation (TMS) has the potential to probe and modulate brain networks implicated in neuropsychiatric disorders, including FMD. Therefore, the objective of this proof-of-concept study was to investigate the safety, tolerability and preliminary efficacy of fronto-amygdala neuromodulation via targeted left prefrontal intermittent theta burst stimulation (iTBS) on brain and behavioral manifestations of FMD. Six subjects with a clinically defined diagnosis of FMD received three open-label iTBS sessions per day for two consecutive study visits. Safety and tolerability were assessed throughout the trial. Amygdala reactivity to emotionally valenced stimuli presented during an fMRI task and fronto-amygdala connectivity at rest were evaluated at baseline and after each stimulation visit, together with subjective levels of arousal and valence in response to affective stimuli. The FMD symptom severity was assessed at baseline, during treatment and 24 h after the last iTBS session. Multiple doses of iTBS were well-tolerated by all participants. Intermittent TBS significantly decreased fronto-amygdala connectivity and influenced amygdala reactivity to emotional stimuli. These neurocircuitry changes were associated to a marked reduction in FMD symptom severity. Corticolimbic modulation via iTBS represents a promising treatment for FMD that warrants additional research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.