The serotonin transporter (SERT)2 is an integral membrane protein that facilitates transport of serotonin (5-hydroxytryptamine, 5HT) across cellular membranes (1). In addition to peripheral endocrine functions, 5HT is a neurotransmitter in the brain; it is involved in control of several important physiological functions such as mood, appetite, and sexual behavior. Expressed mainly in the membrane of serotonergic neurons, SERT utilizes energetically favorable cotransport of Na ϩ to remove released 5HT from the extracellular space. Human SERT (hSERT) belongs to the solute carrier 6 (SLC6) transporter family along with highly homologous transporters for the neurotransmitters ␥-aminobutyric acid, glycine, dopamine, and norepinephrine (2-4). These transporters are important drug targets for treatment of a wide range of neurological diseases. In particular, hSERT is the molecular target for widely used drugs for treatment of depression and anxiety. Also, psychostimulants such as amphetamine and 3,4-methylenedioxy-N-methylamphetamine ("ecstasy") have hSERT as the molecular target (5-7). The selective serotonin re-uptake inhibitors (SSRIs) are a class of antidepressant and anti-anxiety drugs that function as highly selective competitive inhibitors of hSERT (8). Although SSRIs are highly important for treatment of affective disorders (6), the molecular basis for their function, including location and structure of drug binding pockets, is largely unknown and a matter of debate (9, 10). Such information is important for understanding essential aspects of drug action, ranging from selectivity profile to therapeutic efficacy. Moreover, such information is indispensable for the development of new and improved drugs targeting hSERT. The primary impediment for elucidation of the structural mechanisms of hSERT inhibition is the lack of a three-dimensional structure of the protein. Still, several residues in SERT have been identified mainly by mutagenesis studies that modulate antidepressants potency (11)(12)(13)(14)(15)(16)(17). The use of comparative molecular modeling to create structural models of ligand-hSERT interactions has previously been hampered by the low phylogenetic and functional similarity between hSERT and available template proteins (18 -21). However, high resolution crystal structures of a bacterial homolog to mammalian SLC6 transporters, LeuT (22,23), have proven excellent templates for constructing experimentally validated models of substrate and drug binding pockets in human SLC6 transporters, including the human transporters for dopamine and ␥-aminobutyric acid (24 -32).In this study, we provide an experimentally validated threedimensional model of the binding site in hSERT for the SSRI (S)-citalopram (Lexapro) using mutational analysis of hSERT paired with structure-activity data for (S)-citalopram analogs. LeuT structures are used to create homology models of hSERT, followed by docking of (S)-citalopram. Validation of binding models was performed based on the mutational dataset from 64 hSERT point mutants ...
Background: SERT and NET are important targets for antidepressants. Results: Antidepressants are differentially affected by mutations within the central S1 pocket of SERT and NET. Conclusion: Our data indicate that many antidepressants bind within the S1 pocket, and inhibitor selectivity is determined by residues within this site. Significance: This study provides a framework for modeling of drug binding, which may be used in future structure-based drug design.
Inhibitors of the serotonin transporter (SERT) and norepinephrine transporter (NET) are widely used in the treatment of major depressive disorder. Although SERT/NET selectivity is a key determinant for the therapeutic properties of these drugs, the molecular determinants defining SERT/NET selectivity are poorly understood. In this study, the structural basis for selectivity of the SERT selective inhibitor citalopram and the structurally closely related NET selective inhibitor talopram is delineated. A systematic structureactivity relationship study allowed identification of the substituents that control activity and selectivity toward SERT and NET and revealed a common pattern showing that SERT and NET have opposite preference for the stereochemical configuration of these inhibitors. Mutational analysis of nonconserved SERT/NET residues within the central substrate binding site was performed to determine the molecular basis for inhibitor selectivity. Changing only five residues in NET to the complementary residues in SERT transferred a SERT-like affinity profile for R-and S-citalopram into NET, showing that the selectivity of these compounds is determined by amino acid differences in the central binding site of the transporters. In contrast, the activity of R-and S-talopram was largely unaffected by any mutations within the central substrate binding site of SERT and NET and in the outer vestibule of NET, suggesting that citalopram and talopram bind to distinct sites on SERT and NET. Together, these findings provide important insight into the molecular basis for SERT/NET selectivity of antidepressants, which can be used to guide rational development of unique transporter inhibitors with fine-tuned transporter selectivity.monoamine | neurotransmitter | SLC6 transporter I mbalances in neurotransmission involving the monoamines serotonin (5-hydroxytryptamine; 5-HT) and norepinephrine (NE) are implicated in depression and anxiety disorders (1). In the brain, specific monoamine transporters, the 5-HT transporter (SERT) and the NE transporter (NET), curtail the lifetime of extracellular monoamines by performing active uptake (or reuptake) from the extracellular space into neurons. Medications for the treatment of depression and anxiety disorders act by increasing the extracellular concentration of 5-HT and/or NE by inhibiting SERT and/or NET mediated transmitter reuptake (2). SERT and NET belong to the solute carrier 6 (SLC6) transporter family, and they are integral membrane proteins that use cotransport of sodium as an energy source to convey neurotransmitters from the extracellular space to the cytoplasm (3). The first generation of drugs targeting SERT and NET were the tricyclic antidepressants (TCAs), but their activity across a variety of other neurotransmitter receptor systems (4) associate their use with severe side effects. Development of newer generations of monoamine transporter drugs have focused on compounds with an improved selectivity toward SERT and/or NET, exemplified by the selective 5-HT reuptake inh...
The serotonin transporter (SERT) regulates extracellular levels of serotonin (5-hydroxytryptamine, 5HT) in the brain by transporting 5HT into neurons and glial cells. The human SERT (hSERT) is the primary target for drugs used in the treatment of emotional disorders, including depression. hSERT belongs to the solute carrier 6 family that includes a bacterial leucine transporter (LeuT), for which a high resolution crystal structure has become available. LeuT has proved to be an excellent model for human transporters and has advanced the understanding of solute carrier 6 transporter structure-function relationships. However, the precise structural mechanism by which antidepressants inhibit hSERT and the location of their binding pockets are still elusive. We have identified a residue (Ser-438) located within the 5HT-binding pocket in hSERT to be a critical determinant for the potency of several antidepressants, including the selective serotonin reuptake inhibitor citalopram and the tricyclic antidepressants imipramine, clomipramine, and amitriptyline. A conservative mutation of Ser-438 to threonine (S438T) selectively increased the K i values for these antidepressants up to 175-fold. The effects of introducing a protein methyl group into the 5HT-binding pocket by S438T were absent or reduced for analogs of these antidepressants lacking a single methyl group. This suggests that these antidepressants interact directly with Ser-438 during binding to hSERT, implying an overlapping localization of substrateand inhibitor-binding sites in hSERT suggesting that antidepressants function by a mechanism that involves direct occlusion of the 5HT-binding site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.