Context.A new class of exoplanets has emerged: the ultra hot Jupiters, the hottest close-in gas giants. The majority of them have weaker-than-expected spectral features in the 1.1 − 1.7µm bandpass probed by HST/WFC3 but stronger spectral features at longer wavelengths probed by Spitzer. This led previous authors to puzzling conclusions about the thermal structures and chemical abundances of these planets. Aims. We investigate how thermal dissociation, ionization, H − opacity, and clouds shape the thermal structures and spectral properties of ultra hot Jupiters. Methods. We use the SPARC/MITgcm to model the atmospheres of four ultra hot Jupiters and discuss more thoroughly the case of WASP-121b. We expand our findings to the whole population of ultra hot Jupiters through analytical quantification of the thermal dissociation and its influence on the strength of spectral features. Results. We predict that most molecules are thermally dissociated and alkalies are ionized in the dayside photospheres of ultra hot Jupiters. This includes H 2 O, TiO, VO, and H 2 but not CO, which has a stronger molecular bond. The vertical molecular gradient created by the dissociation significantly weakens the spectral features from H 2 O while the 4.5µm CO feature remains unchanged. The water band in the HST/WFC3 bandpass is further weakened by the continuous opacity of the H − ions. Molecules are expected to recombine before reaching the limb, leading to order of magnitude variations of the chemical composition and cloud coverage between the limb and the dayside. Conclusions. Molecular dissociation provides a qualitative understanding of the lack of strong spectral features of water in the 1 − 2µm bandpass observed in most ultra hot Jupiters. Quantitatively, our model does not provide a satisfactory match to the WASP-121b emission spectrum. Together with WASP-33b and Kepler-33Ab, they seem the outliers among the population of ultra hot Jupiters, in need of a more thorough understanding.
We present one of the most precise emission spectra of an exoplanet observed so far. We combine five secondary eclipses of the hot Jupiter WASP-18 b (T day ∼ 2900 K) that we secured between 1.1 and 1.7 µm with the WFC3 instrument aboard the Hubble Space Telescope. Our extracted spectrum (S/N=50, R∼40) does not exhibit clearly identifiable molecular features but is poorly matched by a blackbody spectrum. We complement this data with previously published Spitzer/IRAC observations of this target and interpret the combined spectrum by computing a grid of self-consistent, 1D forward models, varying the composition and energy budget. At these high temperatures, we find there are important contributions to the overall opacity from H − ions, as well as the removal of major molecules by thermal dissociation (including water), and thermal ionization of metals. These effects were omitted in previous spectral retrievals for very hot gas giants, and we argue that they must be included to properly interpret the spectra of these objects. We infer a new metallicity and C/O ratio for WASP-18 b, and find them well constrained to be solar ([M/H]= −0.01 ± 0.35, C/O < 0.85 at 3σ confidence level), unlike previous work but in line with expectations for giant planets. The best fitting selfconsistent temperature-pressure profiles are inverted, resulting in an emission feature at 4.5 µm seen in the Spitzer photometry. These results further strengthen the evidence that the family of very hot gas giant exoplanets commonly exhibit thermal inversions.
We present thermal phase curve measurements for the hot Jupiter WASP-103b observed with Hubble/WFC3 and Spitzer /IRAC. The phase curves have large amplitudes and negligible hotspot offsets, indicative of poor heat redistribution to the nightside. We fit the phase variation with a range of climate maps and find that a spherical harmonics model generally provides the best fit. The phase-resolved spectra are consistent with blackbodies in the WFC3 bandpass, with brightness temperatures ranging from 1880 ± 40 K on the nightside to 2930 ± 40 K on the dayside. The dayside spectrum has a significantly higher brightness temperature in the Spitzer bands, likely due to CO emission and a thermal inversion. The inversion is not present on the nightside. We retrieved the atmospheric composition and found the composition is moderately metal-enriched ([M/H] = 23 +29 −13 × solar) and the carbon-to-oxygen ratio is below 0.9 at 3 σ confidence. In contrast to cooler hot Jupiters, we do not detect spectral features from water, which we attribute to partial H 2 O dissociation. We compare the phase curves to 3D general circulation models and find magnetic drag effects are needed to match the data. We also compare the WASP-103b spectra to brown dwarfs and young directly imaged companions and find these objects have significantly larger water features, indicating that surface gravity and irradiation environment play an important role in shaping the spectra of hot Jupiters. These results highlight the 3D structure of exoplanet atmospheres and illustrate the importance of phase curve observations for understanding their complex chemistry and physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.