Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood-tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other's binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications.
The evolution of failure of bone and cement leading to loosening of glenoid components following shoulder arthroplasty is not well understood. The purpose of this study was to identify and visualize potential mechanisms of mechanical failure within cadavers, cemented with two types of components, and subject to cyclic loading. Five glenoid cadaver bones were implanted with either a three-pegged polyethylene component, or prototype posteriorly augmented component which addresses posterior bone loss. Specimens were loaded by constant glenohumeral compression combined with cyclic anterior-posterior displacement of the humeral head relative to the glenoid. At six time points across 100,000 cycles, implant loosening micromotions were optically measured, and specimens were imaged by micro-computed tomography. Scans were 3D registered and inspected for crack initiation and progression, and micro-CT based time-lapse movies were created. Cement cracking initiated at stress concentrations and progressed with additional cyclic loading. Failure planes within trabecular bone and the bone-cement interface were identified in four of the five specimens. Implant subsidence increased to greater than 1.0 mm in two specimens. Cemented glenoid structural failure can occur within the cement, along planes of trabecular bone, or at the bone cement interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.