Abstract. Most virtual database systems are suitable for environments in which the set of member information sources is small and stable. Consequently, present virtual database systems do not scale up very well. The main reason is the complexity and cost of incorporating new information sources into the virtual database. In this paper we describe a system, called Autoplex, which uses machine learning techniques for automating the discovery of new content for virtual database systems. Autoplex assumes that several information sources have already been incorporated ("mapped") into the virtual database system by human experts (as done in standard virtual database systems). Autoplex learns the features of these examples. It then applies this knowledge to new candidate sources, trying to infer views that "resemble" the examples. In this paper we report initial results from the Autoplex project.
Abstract. Schema matching, the problem of finding mappings between the attributes of two semantically related database schemas, is an important aspect of many database applications such as schema integration, data warehousing, and electronic commerce. Unfortunately, schema matching remains largely a manual, labor-intensive process. Furthermore, the effort required is typically linear in the number of schemas to be matched; the next pair of schemas to match is not any easier than the previous pair. In this paper we describe a system, called Automatch, that uses machine learning techniques to automate schema matching. Based primarily on Bayesian learning, the system acquires probabilistic knowledge from examples that have been provided by domain experts. This knowledge is stored in a knowledge base called the attribute dictionary. When presented with a pair of new schemas that need to be matched (and their corresponding database instances), Automatch uses the attribute dictionary to find an optimal matching. We also report initial results from the Automatch project.
Schema matching, the problem of finding mappings between the attributes of two semantically related database schemas, is an important aspect of many database applications such as schema integration, data warehousing, and electronic commerce. Unfortunately, schema matching remains largely a manual, labor-intensive process. Furthermore, the effort required is typically linear in the number of schemas to be matched; the next pair of schemas to match is not any easier than the previous pair. In this paper we describe a system, called Automatch, that uses machine learning techniques to automate schema matching. Based primarily on Bayesian learning, the system acquires probabilistic knowledge from examples that have been provided by domain experts. This knowledge is stored in a knowledge base called the attribute dictionary. When presented with a pair of new schemas that need to be matched (and their corresponding database instances), Automatch uses the attribute dictionary to find an optimal matching. We also report initial results from the Automatch project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.