QuantiFERON-TB Gold Plus (QFT-Plus) is the latest generation of interferon-gamma release assays (IGRAs) to receive approval from the US FDA, replacing its predecessor QuantiFERON-TB Gold In-Tube (QFT-GIT). The novelty of QFT-Plus is that it elicits a response from CD8 T-cells in addition to CD4 T-cells, thus collecting a broader response from T-cell subsets compared with QFT-GIT. It was developed with the aim to improve detection of M. tuberculosis infection (LTBI), especially among recently exposed, immunocompromised hosts and young children. In this mini review, we summarize the performance of QFT-Plus compared with QFT-GIT among active TB patients (a surrogate for LTBI), high-risk populations, and low-risk individuals based on recent publications. Studies comparing QFT-Plus to QFT-GIT currently do not support superior performance of QFT-Plus in individuals with active TB and LTBI. The difference in sensitivity between QFT-Plus and QFT-GIT in active TB patients was not significant in nearly all studies and ranged from -4.0 to 2.0%. Among high-risk groups, the agreement between QFT-Plus and QFT-GIT was 89.9 to 96.0% (kappa 0.80 to 0.91). The specificity in the low-risk population was slightly lower in QFT-Plus than QFT-GIT with a difference ranging from -7.4 to 0%. Further studies are needed to accurately evaluate the sensitivity of QFT-Plus in immunocompromised hosts and children. In addition, further evidence is required to validate a modified interpretation of QFT-Plus for the identification of false-positive results in low-risk healthcare workers.
Background The diagnostic challenges associated with the COVID‐19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS‐CoV‐2 infection. Serology tests to detect the presence of antibodies to SARS‐CoV‐2 enable detection of past infection and may detect cases of SARS‐CoV‐2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS‐CoV‐2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS‐CoV‐2 epidemiology. Objectives To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS‐CoV‐2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS‐CoV‐2. Sources of heterogeneity investigated included: timing of test, test method, SARS‐CoV‐2 antigen used, test brand, and reference standard for non‐SARS‐CoV‐2 cases. Search methods The COVID‐19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co‐ordinating Centre (EPPI‐Centre) ‘COVID‐19: Living map of the evidence’ and the Norwegian Institute of Public Health ’NIPH systematic and living map on COVID‐19 evidence’. We did not apply language restrictions. Selection criteria We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT‐PCR test. Small studies with fewer than 25 SARS‐CoV‐2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS‐CoV‐2 (including reverse transcription polymerase chain reaction tests (RT‐PCR), clinical diagnostic criteria, and pre‐pandemic samples). Data collection and analysis We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS‐2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta‐analysis, we fitted univariate random‐effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random‐effects logistic regression models. We tabulated result...
The advent of affordable, portable ultrasound devices has led to increasing interest in the use of point-of-care ultrasound (POCUS) for the detection of pulmonary TB (PTB). We undertook a systematic review of the diagnostic accuracy of POCUS for PTB. Five databases were searched for articles published between January 2010 and June 2020. Risk of bias was assessed using QUADAS-2. Data on sensitivity and specificity of individual lung ultrasound findings were collected, with variable reference standards including PCR and sputum smear microscopy. Six of 3,919 reviewed articles were included: five in adults and one in children, with a total sample size of 564. Studies had high risk of bias in many domains. In adults, subpleural nodule and lung consolidation were the lung ultrasound findings with the highest sensitivities, ranging from 72.5% to 100.0% and 46.7% to 80.4%, respectively. Only one study reported specificity data. Variability in sensitivity may be due to variable reference standards or may imply operator dependence. There is insufficient evidence to judge the diagnostic accuracy of POCUS for PTB. There is also no consensus on the optimal protocols for acquiring and analysing POCUS images for PTB. New studies which minimise potential sources of bias are required to further assess the diagnostic accuracy of POCUS for PTB.
While Tanzania is among the high TB burden countries to reach the WHO’s End TB 2030 milestones, 41% of the people estimated to have had TB in 2020 were not diagnosed and notified. As part of the response to close the TB treatment coverage gap, SHDEPHA+ Kahama conducted a TB REACH active case-finding (ACF) intervention among rural and mining communities in Northwest Tanzania to increase TB/HIV case notification from July 2017 to June 2020. The intervention successfully linked marginalized mining communities with integrated TB/HIV screening, diagnostic, and referral services, screening 144,707 people for TB of whom 24,200 were tested for TB and 4,478 were tested for HIV, diagnosing 1,499 people with TB and 1,273 people with HIV (including at least 154 people with TB/HIV coinfection). The intervention revealed that community-based ACF can ensure high rates of linkage to care among hard-to-reach populations for TB. Providing integrated TB and HIV screening and diagnostic services during evening hours (Moonlight Events) in and around mining settlements can yield a large number of people with undiagnosed TB and HIV. For TB, this is true not only amongst miners but also FSW living in the same communities, who appear to be at similar or equally high risk of infection. Local NGOs can help to bridge the TB treatment coverage gap and to improve TB and HIV health outcomes by linking these marginalized groups with public sector services. Capturing the number of referrals arriving at CTCs is an important next step to identify how well the integrated TB/HIV outreach services operate and how they can be strengthened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.