Far-ultraviolet scintillation signals have been measured in heavy noble gases (argon, krypton, xenon) following boron-neutron capture (10B(n,α)7Li) in 10B thin films. The observed scintillation yields are comparable to the yields from some liquid and solid neutron scintillators. At noble gas pressures of 107 kPa, the number of photons produced per neutron absorbed following irradiation of a 1200 nm thick 10B film was 14 000 for xenon, 11 000 for krypton, and 6000 for argon. The absolute scintillation yields from the experimental configuration were calculated using data from (1) experimental irradiations, (2) thin-film characterizations, (3) photomultiplier tube calibrations, and (4) photon collection modeling. Both the boron films and the photomultiplier tube were characterized at the National Institute of Standards and Technology. Monte Carlo modeling of the reaction cell provided estimates of the photon collection efficiency and the transport behavior of 10B(n,α)7Li reaction products escaping the thin films. Scintillation yields increased with gas pressure due to increased ionization and excitation densities of the gases from the 10B(n,α)7Li reaction products, increased frequency of three-body, excimer-forming collisions, and reduced photon emission volumes (i.e., larger solid angle) at higher pressures. Yields decreased for thicker 10B thin films due to higher average energy loss of the 10B(n,α)7Li reaction products escaping the films. The relative standard uncertainties in the measurements were determined to lie between 14% and 16%. The observed scintillation signal demonstrates that noble gas excimer scintillation is promising for use in practical neutron detectors.
In the course of investigations of thermal neutron detection based on mixtures of 10 BF 3 with other gases, knowledge was required of the photoabsorption cross sections of 10 BF 3 for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III synchrotron radiation facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10 −20 cm 2 at 135 nm to less than 10 −21 cm 2 in the region from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135 to 145 nm, 150 to 165 nm and 190 to 205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.