Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs.
Purpose of Review The development of biventricular repair and conversion pathways for patients with borderline hypoplastic heart disease represents an area of recent inquiry and innovation. This review summarizes emerging techniques and novel treatment algorithms for borderline hypoplastic heart disease with a focus on surgical advances within the last 10 years. Recent Findings Many patients with borderline hypoplastic heart disease are amenable to primary biventricular repair, or biventricular conversion following single-ventricle palliation coupled with ventricular rehabilitation strategies. New insights into the potential for growth and recovery of borderline ventricles have been uncovered. However, questions remain regarding optimal patient selection and the long-term outcomes of select patient groups treated with single-ventricle palliation versus biventricular repair/conversion or transplantation. Summary Efforts to direct a greater proportion of borderline hypoplastic heart patients towards a biventricular circulation are accelerating and represent important avenues for progress and future research in the field of congenital heart disease.
Hypertrophic cardiomyopathy (HCM) is a genetic disease of the sarcomere that causes otherwise unexplained cardiac hypertrophy and is associated with sudden death. While previous studies showed the role of the epigenetic modifier Brg1 in mouse models of HCM, additional work is needed to identify its role in humans. We tested the hypothesis that BRG1 expression is increased in periods of cardiac remodeling during fetal growth and in development of HCM. We employed immunohistochemical staining to evaluate protein expression of BRG1 in 796 human cardiac specimens (81 from patients with HCM) and describe elevated BRG1 expression in human fetal hearts in early development. In addition, we not only demonstrate increased expression of BRG1 in HCM, but we also show that other diseases that lead to heart failure have similar BRG1 expression to healthy controls. Inhibition of BRG1 in human induced pluripotent stem cell-derived cardiomyocytes significantly decreases MYH7 and increases MYH6, suggesting a regulatory role for BRG1 in the pathological imbalance of the two myosin heavy chain isoforms in human HCM. These data are the first demonstration of BRG1 as a specific biomarker for human HCM and provide foundation for future studies of epigenetics in human cardiac disease.
The recurrence of ventral hernias continues to be a problem faced by surgeons, in spite of efforts toward implementing novel repair techniques and utilizing different materials to promote healing. Cadaveric acellular dermal matrices (Alloderm) have shown some promise in numerous surgical subspecialties, but these meshes still suffer from subsequent failure and necessitation of re‐intervention. Here, it is demonstrated that the addition of platelet rich plasma to Alloderm meshes temporally modulates both the innate and cytotoxic inflammatory responses to the implanted material. This results in decreased inflammatory cytokine production at early time points, decreased matrix metalloproteinase expression, and decreased CD8+ T cell infiltration. Collectively, these immune effects result in a healing phenotype that is free from mesh thinning and characterized by increased material stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.