The natural convection boundary layer ( δ n c ) and its influence on cathodic current in a galvanic couple under varying electrolytes as a function of concentration (1 − 5.3 M NaCl) and temperature (25 °C−45 °C) were understood. Polarization scans were obtained under quiescent conditions and at defined boundary layer thicknesses using a rotating disk electrode on platinum and stainless steel 304L (SS304L); these were combined to determine δ n c . With increasing chloride concentration and temperature, δ n c decreased. Increased mass transport (Sherwood number) results in a decrease in δ n c , providing a means to predict this important boundary. Using Finite Element Modeling, the cathodic current was calculated for an aluminum alloy/SS304L galvanic couple as a function of water layer (WL) thickness and cathode length. Electrolyte domains were delineated, describing (i) dominance of ohmic resistance over mass transport under thin WL, (ii) the transition from thin film to bulk conditions at δ n c , and (iii) dominance of mass transport under thick WL. With increasing chloride concentration, cathodic current decreased due to decreases in mass transport. With increasing temperature, increased cathodic current was related to increases in mass transport and solution conductivity. This study has implications for sample sizing and corrosion prediction under changing environments.
In this work, a rotating disk electrode was used to measure the cathodic kinetics on stainless steel as a function of diffusion layer thickness (6 to 60 μm) and chloride concentration (0.6 to 5.3 M NaCl). It was found that, while the cathodic kinetics followed the Levich equation for large diffusion layer thicknesses, the Levich equation overpredicts the mass-transfer limited current density for diffusion layer thicknesses less than 20 μm. Also, an unusual transitory response between the activation and mass-transfer controlled regions was observed for small diffusion layer thicknesses that was more apparent in lower concentration solutions. The presence and reduction of an oxide film and a transition in the oxygen reduction mechanism were identified as possible reasons for this response. The implications of these results on atmospheric corrosion kinetics under thin electrolyte layers is discussed.
Calculated maximum pit sizes for stainless steel 304L (SS304L) are presented for atmospheric conditions with elevated chloride concentrations and temperatures. These calculations were carried out by experimentally determining the pit stability product ((i • x) s f ), repassivation potential (E r p ), and cathodic kinetics. These results were aided by determination of a solubility curve as a function of temperature for a stoichiometric metal salt mixture of iron chloride (FeCl 2 ), chromium chloride (CrCl 3 ), and nickel chloride (NiCl 2 ). Based on these newly measured saturation concentrations, metal ion diffusivities were calculated. Overall, it was found that (i • x) s f decreases with increasing chloride concentration and increases with increasing temperature. E r p was determined to decrease with increasing concentration and increase with increasing temperature. When incorporated into the maximum pit size model, these experimental results yielded a small increase in maximum pit size with increasing bulk chloride concentrations and/or increasing temperature.
During typical atmospheric conditions, cathodic reduction reactions produce hydroxyl ions increasing the pH in the cathodic region. Therefore, cathodic reduction reactions are investigated on platinum and stainless steel 304 L (SS304L) in NaOH solutions ranging in pH from 13.6 to 16.5. It was found that in solution pHs less than 16.5 the cathodic reduction reaction on Pt and SS304L was ORR with an electron transfer number less than two due to superoxide formation as an intermediate. Increasing pH decreased the number of electrons transferred. At a pH of 16.5, the cathodic reduction reaction on SS304L is no longer ORR and the cathodic current on the surface of the alloy is due to oxide reduction occurring on the surface as indicated by the creation of multi-component Pourbaix diagrams. The results of this study have important implications for predicting corrosion in atmospheric environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.