The matricellular protein CCN1 (CYR61) is known to function in wound healing and is upregulated in colons of patients with Crohn’s disease and ulcerative colitis, yet its specific role in colitis is unknown. Here we have used Ccn1dm/dm knockin mice expressing a CCN1 mutant unable to bind integrins α6β1 and αMβ2 as a model to probe CCN1 function in dextran sodium sulfate (DSS)-induced colitis. Ccn1dm/dm mice exhibited high mortality, impaired mucosal healing, and diminished IL-6 expression during the repair phase of DSS-induced colitis compared to wild type mice, despite having comparable severity of initial inflammation and tissue injury. CCN1 induced IL-6 expression in macrophages through integrin αMβ2 and in fibroblasts through α6β1, and IL-6 promoted intestinal epithelial cell (IEC) proliferation. Administration of purified CCN1 protein fully rescued Ccn1dm/dm mice from DSS-induced mortality, restored IEC proliferation and enhanced mucosal healing, whereas delivery of IL-6 partially rectified these defects. CCN1 therapy accelerated mucosal healing and recovery from DSS-induced colitis even in wild type mice. These findings reveal a critical role for CCN1 in restoring mucosal homeostasis after intestinal injury in part through integrin-mediated induction of IL-6 expression, and suggest a therapeutic potential for activating the CCN1/IL-6 axis for treating inflammatory bowel disease.
BackgroundImmune checkpoint inhibitors (ICIs) are approved to treat multiple cancers. Retrospective analyses demonstrate acceptable safety of ICIs in most patients with autoimmune disease, although disease exacerbation may occur. Psoriasis vulgaris is a common, immune-mediated disease, and outcomes of ICI treatment in patients with psoriasis are not well described. Thus we sought to define the safety profile and effectiveness of ICIs in patients with pre-existing psoriasis.MethodsIn this retrospective cohort study, patients from eight academic centers with pre-existing psoriasis who received ICI treatment for cancer were evaluated. Main safety outcomes were psoriasis exacerbation and immune-related adverse events (irAEs). We also assessed progression-free survival (PFS) and overall survival.ResultsOf 76 patients studied (50 (66%) male; median age 67 years; 62 (82%) with melanoma, 5 (7%) with lung cancer, 2 (3%) with head and neck cancer, and 7 (9%) with other cancers; median follow-up 25.1 months (range=0.2–99 months)), 51 (67%) received anti-PD-1 antibodies, 8 (11%) anti-CTLA-4, and 17 (22%) combination of anti-PD-1/CTLA-4. All patients had pre-existing psoriasis, most frequently plaque psoriasis (46 patients (61%)) and 15 (20%) with psoriatic arthritis. Forty-one patients (54%) had received any prior therapy for psoriasis although only two (3%) were on systemic immunosuppression at ICI initiation. With ICI treatment, 43 patients (57%) experienced a psoriasis flare of cutaneous and/or extracutaneous disease after a median of 44 days of receiving ICI. Of those who experienced a flare, 23 patients (53%) were managed with topical therapy only; 16 (21%) needed systemic therapy. Only five patients (7%) required immunotherapy discontinuation for psoriasis flare. Forty-five patients (59%) experienced other irAEs, 17 (22%) of which were grade 3/4. PFS with landmark analysis was significantly longer in patients with a psoriasis flare versus those without (39 vs 8.7 months, p=0.049).ConclusionsIn this multicenter study, ICI therapy was associated with frequent psoriasis exacerbation, although flares were manageable with standard psoriasis treatments and few required ICI discontinuation. Patients who experienced disease exacerbation performed at least as well as those who did not. Thus, pre-existing psoriasis should not prevent patients from receiving ICIs for treatment of malignancy.
Intestinal stem cells (ISCs) at the crypt base contribute to intestinal homeostasis through a balance between self-renewal and differentiation. However, the molecular mechanisms regulating this homeostatic balance remain elusive. Here we show that the matricellular protein CCN1/CYR61 coordinately regulates ISC proliferation and differentiation through distinct pathways emanating from CCN1 interaction with integrins αvβ3/αvβ5. Mice that delete Ccn1 in Lgr5 + ISCs or express mutant CCN1 unable to bind integrins αvβ3/αvβ5 exhibited exuberant ISC expansion and enhanced differentiation into secretory cells at the expense of absorptive enterocytes in the small intestine, leading to nutrient malabsorption. Analysis of crypt organoids revealed that through integrins αvβ3/αvβ5, CCN1 induces NF-κB-dependent Jag1 expression to regulate Notch activation for differentiation and promotes Src-mediated YAP activation and Dkk1 expression to control Wnt signaling for proliferation. Moreover, CCN1 and YAP amplify the activities of each other in a regulatory loop. These findings establish CCN1 as a niche factor in the intestinal crypts, providing insights into how matrix signaling exerts overarching control of ISC homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.