Ghrelin is a gastric‐derived peptide hormone with demonstrated impact on alcohol intake and craving, but the reverse side of this bidirectional link, that is, the effects of alcohol on the ghrelin system, remains to be fully established. To further characterize this relationship, we examined (1) ghrelin levels via secondary analysis of human laboratory alcohol administration experiments with heavy‐drinking participants; (2) expression of ghrelin, ghrelin receptor, and ghrelin‐O‐acyltransferase (GOAT) genes (GHRL, GHSR, and MBOAT4, respectively) in post‐mortem brain tissue from individuals with alcohol use disorder (AUD) versus controls; (3) ghrelin levels in Ghsr knockout and wild‐type rats following intraperitoneal (i.p.) alcohol administration; (4) effect of alcohol on ghrelin secretion from gastric mucosa cells ex vivo and GOAT enzymatic activity in vitro; and (5) ghrelin levels in rats following i.p. alcohol administration versus a calorically equivalent non‐alcoholic sucrose solution. Acyl‐ and total‐ghrelin levels decreased following acute alcohol administration in humans, but AUD was not associated with changes in central expression of ghrelin system genes in post‐mortem tissue. In rats, alcohol decreased acyl‐ghrelin, but not des‐acyl‐ghrelin, in both Ghsr knockout and wild‐type rats. No dose‐dependent effects of alcohol were observed on acyl‐ghrelin secretion from gastric mucosa cells or on GOAT acylation activity. Lastly, alcohol and sucrose produced distinct effects on ghrelin in rats despite equivalent caloric value. Our findings suggest that alcohol acutely decreases peripheral ghrelin concentrations in vivo, but not in proportion to alcohol's caloric value or through direct interaction with ghrelin‐secreting gastric mucosal cells, the ghrelin receptor, or the GOAT enzyme.
Preclinical and clinical studies have identified the ghrelin receptor (growth hormone secretagogue receptor 1a; GHSR1a) as a potential target for treating alcohol use disorder. A recent Phase 1a clinical trial of a GHSR1a antagonist/inverse agonist, PF-5190457, in individuals with heavy alcohol drinking, identified a previously undetected major hydroxy metabolite of PF-5190457, namely PF-6870961. Here, we further characterized PF-6870961 by screening for off-target interactions in a high throughput screen and determined its in vitro pharmacodynamic profile at GHSR1a through binding and concentrationresponse assays. Moreover, we determined whether the metabolite demonstrated an in vivo effect by assessing effects on food intake in male and female rats. We found that PF-6870961 had no off-target interactions and demonstrated both binding affinity and inverse agonist activity at GHSR1a. In comparison to its parent compound, PF-5190457, the metabolite PF-6870961 had lower binding affinity and potency at inhibiting GHSR1a-induced inositol phosphate accumulation. However, PF-6870961 had increased inhibitory potency at GHSR1a-induced β-arrestin recruitment relative to its parent compound.Intraperitoneal injection of PF-6870961 suppressed food intake under conditions of both food restriction and with ad libitum access to food in male and female rats, demonstrating in vivo activity. The effects of PF-6870961 on food intake were abolished in male and female rats knock-out for GHSR, thus demonstrating that its effects on food intake are in fact mediated by the GHSR receptor. Our findings indicate that the newly discovered major hydroxy metabolite of PF-5190457 may contribute to the overall activity of PF-5190457 by demonstrating inhibitory activity at GHSR1a. Significance statement: Antagonists or inverse agonists of the growth hormone secretagogue receptor (GHSR1a) have demonstrated substantial potential as therapeutics for alcohol use disorder. We here expand understanding of the pharmacology of one such GHSR1a inverse agonist, PF-5190457, by studying the safety and pharmacodynamics of its major hydroxy metabolite, PF-6870961. Our data demonstrate biased inverse agonism of PF-6870961 at GHSR1a and provides new structure-activity relationship insight into GHSR1a inverse agonism.
Ghrelin is a gastric-derived peptide hormone with demonstrated impact on alcohol intake and craving, but the reverse side of this bidirectional link, i.e., the effects of alcohol on the ghrelin system, remains to be fully established. To characterize the downstream effects of alcohol on the ghrelin system, we examined the following: (1) plasma ghrelin levels across four human laboratory alcohol administration experiments with non-treatment seeking, heavy-drinking participants, (2) expression of ghrelin, ghrelin receptor, and ghrelin-O-acyltransferase (GOAT) genes (GHRL, GHSR, and MBOAT4, respectively) in human post-mortem brain tissue from individuals with alcohol use disorder (AUD) vs. controls, (3) plasma ghrelin levels in Ghsr knockout and wild-type rats following intraperitoneal (i.p.) ethanol administration, (4) effect of ethanol on ghrelin secretion from gastric mucosa cells ex vivo and GOAT enzymatic activity in vitro, and (5) plasma ghrelin levels in rats following i.p. ethanol administration vs. an iso-caloric sucrose solution. Peripheral acyl- and total ghrelin levels significantly decreased following acute ethanol administration in humans. No difference in GHRL, GHSR, and MBOAT4 mRNA expression in the brain was observed between AUD vs. control post-mortem samples. In rats, acyl-ghrelin levels significantly decreased following i.p. ethanol administration in both genotype groups (Ghsr knockout and wild-type), while des-acyl-ghrelin was not affected by ethanol. No effect of ethanol was observed ex vivo on ghrelin secretion from gastric mucosa cells or in vitro on GOAT acylation activity. Lastly, we observed different effects of i.p. ethanol and sucrose solution on acyl- and des-acyl-ghrelin in rats despite administering amounts with equivalent caloric value. Ethanol acutely decreases peripheral ghrelin concentrations in humans and rats, and our findings suggest that this effect does not occur through interaction with ghrelin-secreting gastric mucosal cells, the ghrelin receptor, or the GOAT enzyme. Moreover, this effect does not appear to be proportional to caloric load. Our findings, therefore, suggest that ethanol does not suppress circulating ghrelin through direct interaction with the ghrelin system, or in proportion to the caloric value of alcohol, and may differentially affect ghrelin acylation and ghrelin peptide secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.