Ca influx into mitochondria is mediated by the mitochondrial calcium uniporter (MCU), whose identity was recently revealed as a 40-kDa protein that along with other proteins forms the mitochondrial Ca uptake machinery. The MCU is a Ca-conducting channel spanning the inner mitochondrial membrane. Here, deletion of the MCU completely inhibited Ca uptake in liver, heart, and skeletal muscle mitochondria. However, in brain nonsynaptic and synaptic mitochondria from neuronal somata/glial cells and nerve terminals, respectively, the MCU deletion slowed, but did not completely block, Ca uptake. Under resting conditions, brain MCU-KO mitochondria remained polarized, and in brain MCU-KO mitochondria, the electrophoretic Ca ionophore ETH129 significantly accelerated Ca uptake. The residual Ca uptake in brain MCU-KO mitochondria was insensitive to inhibitors of mitochondrial Na/Ca exchanger and ryanodine receptor (CGP37157 and dantrolene, respectively), but was blocked by the MCU inhibitor Ru360. Respiration of WT and MCU-KO brain mitochondria was similar except that for mitochondria that oxidized pyruvate and malate, Ca more strongly inhibited respiration in WT than in MCU-KO mitochondria. Of note, the MCU deletion significantly attenuated but did not completely prevent induction of the permeability transition pore (PTP) in brain mitochondria. Expression level of cyclophilin D and ATP content in mitochondria, two factors that modulate PTP induction, were unaffected by MCU-KO, whereas ADP was lower in MCU-KO than in WT brain mitochondria. Our results suggest the presence of an MCU-independent Ca uptake pathway in brain mitochondria that mediates residual Ca influx and induction of PTP in a fraction of the mitochondrial population.
Background: Neurotrophins regulate transcription factor NFAT and NFAT-mediated neuronal functions, but the underlying mechanisms are poorly defined. Results: NGF facilitated depolarization-induced NFAT activation in sensory neurons, which depended on PI3K, Akt, and GSK3 but not on PLC. Conclusion: NGF-dependent facilitation of NFAT activation is mediated by the PI3K-Akt-GSK3 pathway.Significance: This novel mechanism may represent an important component of NFAT-dependent gene regulation in neurons.
Microtubule-associated protein tau associates with Src family tyrosine kinase Fyn and is tyrosine phosphorylated by Fyn. The presence of tyrosine phosphorylated tau in AD and the involvement of Fyn in AD has drawn attention to the tau-Fyn complex.In this study, a tau-Fyn double knockout (DKO) mouse was generated to investigate the role of the complex. DKO mice resembled Fyn KO in novel object recognition and contextual fear conditioning tasks and resembled tau KO mice in the pole test and protection from pentylenetetrazole-induced seizures. In glutamate-induced Ca 2+ response, Fyn KO was decreased relative to WT and DKO had a greater reduction relative to Fyn KO, suggesting that tau may have a Fyn-independent role. Since tau KO resembled WT in its Ca 2+ response, we investigated whether microtubule-associated protein 2 (MAP2) served to compensate for tau, since the MAP2 level was increased in tau KO but decreased in DKO mice. We found that like tau, MAP2 increased Fyn activity. Moreover, tau KO neurons had increased density of dendritic MAP2-Fyn complexes relative to WT neurons. Therefore, we hypothesize that in the tau KO, the absence of tau would be compensated by MAP2, especially in the dendrites, where tau-Fyn complexes are of critical importance. In the DKO, decreased levels of MAP2 made compensation more difficult, thus revealing the effect of tau in the Ca 2+ response.
K E Y W O R D Scalcium, Fyn, MAP2, proximity ligation assay, tau
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.