Self-reactive T cells can escape thymic deletion and therefore some of these potentially autoaggressive T cells need to convert into regulatory T (Treg) cells to help control responses against self. However, it remains unknown how peripheral self-reactive T cells are specifically instructed to become Treg cells. We report that CD5, whose expression is upregulated in T cells by self and tolerizing antigens in the thymus and periphery, governed extrathymic Treg cell development. CD5 modified effector cell-differentiating signals that inhibit Treg cell induction. Treg cell conversion of Cd5(-/-) and CD5(lo) T cells was inhibited by even small amounts of interleukin-4 (IL-4), IL-6, and interferon-γ (IFN-γ) produced by bystander lymphocytes, while CD5(hi) T cells resisted this inhibition of Treg cell induction. Our findings further revealed that CD5 promoted Treg cell induction by blocking mechanistic target of rapamycin (mTOR) activation. Therefore CD5 instructs extrathymic Treg cell development in response to self and tolerizing antigens.
Dendritic Cells (DCs) can induce peripheral immune tolerance that prevents autoimmune responses. Antigen presentation by peripheral DCs under steady state conditions leads to a conversion of some peripheral CD4+ T cells into Treg cells that require Homeodomain Only Protein (Hopx) to mediate T cell unresponsiveness. However, the roles of these peripheral (p)Treg cells in averting autoimmune responses as well as immunological mechanisms of Hopx remain unknown. Here we report that Hopx+ pTreg cells converted by DCs from Hopxneg T cells are indispensible to sustain tolerance that prevents autoimmune responses directed at self-antigens during experimental acute encephalomyelitis (EAE). Our studies further reveal that Hopx inhibits intrinsic IL-2 expression in pTreg cells after antigenic re-challenge. In the absence of Hopx, increased levels of IL-2 lead to death and decreased numbers of pTreg cells. Therefore formation of Hopx+ pTreg cells represents a crucial pathway of sustained tolerance induced by peripheral DCs and the maintenance of such pTreg cells and tolerance requires functions of Hopx to block intrinsic IL-2 production in pTreg cells.
SUMMARY Multiple Sclerosis (MS) is a presumed autoimmune disease directed against central nervous system (CNS) myelin, in which diet and obesity are implicated as risk factors. Immune responses can be influenced by molecules produced by fat cells, called adipokines. Adiponectin is an adipokine with anti-inflammatory effects. We tested the hypothesis that adiponectin has a protective role in the experimental autoimmune encephalomyelitis (EAE) model for MS, that can be induced by immunization with myelin antigens or transfer of myelin-specific T lymphocytes. Adiponectin deficient (ADPKO) mice developed worse EAE with greater CNS inflammation, demyelination and axon injury. Lymphocytes from myelin-immunized ADP KO mice proliferated more, produced higher amounts of IFNγ, IL-17, TNFα, IL-6 and transferred more severe EAE than wild type (WT) lymphocytes. At EAE peak, the spleen and CNS of ADPKO had fewer Tregulatory cells (Tregs) than WT mice and during EAE recovery, Foxp3, IL-10 and TGFβ CNS expression levels were reduced in ADPKO compared to WT mice. Treatment with globular adiponectin (gADP) in vivo ameliorated EAE, and was associated with an increase in Tregs. These data indicate that adiponectin is an important regulator of T cell functions during EAE, suggesting a new avenue of investigation for MS treatment.
IL-22 is expressed by activated lymphocytes and is important in modulation of tissue responses during inflammation. The cytokine induces proliferative and antiapoptotic pathways in epithelial cells allowing enhanced cell survival. This can have positive effects, such as in the maintenance of epithelial barriers in the gastrointestinal tract, but also negative effects, such as contributing to colorectal tumorigenesis. Because IL-22 can be dual-natured, we hypothesized that its biological activity should be tightly regulated to limit IL-22 expression to the sites of inflammation. One such environmental cue could be low oxygen, which often accompanies inflammation. We show that in CD4 T cells IL-22 expression is upregulated in hypoxia. The Il22 promoter contains a putative conserved hypoxic response element suggesting that the transcription factor HIF-1α may influence IL-22 expression. Differentiation in the presence of dimethyloxallyl glycine, a stabilizer of HIF-1α at normoxia, increased IL-22 expression. Using HIF-1α-deficient CD4 T cells, we show that hypoxic IL-22 upregulation is dependent on HIF-1α. These findings have implications on the regulation of Il22 gene expression and the presence of the cytokine in different inflammatory environments.
full#ref-list-1 , 14 of which you can access for free at: cites 62 articles This article average * 4 weeks from acceptance to publication Fast Publication! • Every submission reviewed by practicing scientists No Triage! • from submission to initial decision Rapid Reviews! 30 days* • Submit online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.