The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-resonator structures. In this work, we propose a method for generating spectrally unentangled photon pairs from a standard microring resonator. The method utilizes interference between a primary and a delayed secondary pump pulse to effectively increase the pump spectral width inside the cavity. This enables on-chip generation of heralded single photons with state purities in excess of 99% without spectral filtering.
We model the spectral quantum-mechanical purity of heralded single photons from a photon-pair source based on nondegenerate spontaneous four-wave mixing taking the impact of distributed dispersion fluctuations into account. The considered photon-pair-generation scheme utilizes pump-pulse walk-off to produce pure heralded photons and phase matching is achieved through the dispersion properties of distinct spatial modes in a few-mode silica step-index fiber. We show that fiber-core-radius fluctuations in general severely impact the single-photon purity. Furthermore, by optimizing the fiber design we show that generation of single photons with very high spectral purity is feasible even in the presence of large coreradius fluctuations. At the same time, contamination from spontaneous Raman scattering is greatly mitigated by separating the single-photon frequency by more than 32 THz from the pump frequency.
We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber-to-chip coupling and on-chip suppression of generated spontaneous Raman scattering noise. We measure a minimum heralded second-order correlation of , demonstrating that our source operates in the single-photon regime with low noise.
In this work, we investigate the properties of four-wave mixing Bragg scattering driven by orthogonally polarized pumps in a birefringent waveguide. This configuration enables a large signal conversion bandwidth, and allows strongly unidirectional frequency conversion as undesired Bragg-scattering processes are suppressed by waveguide birefringence. Moreover, we show that this form of Bragg scattering preserves the (arbitrary) signal pulse shape, even when driven by pulsed pumps.
We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase modulation and a finite material response time. For the case of a silica fiber, it is found that the pair-production rate depends weakly on the waveguide temperature, due to higher-order Raman scattering events, and more strongly on pump-pair frequency detuning. From the analytical model, a numerical scheme is derived, based on the well-known split-step method. This scheme allows computation of joint states where nontrivial effects are included, such as groupvelocity dispersion and Raman scattering. In this work, the numerical model is used to study the impact of the noninstantaneous response on the prefiltering purity of heralded single photons. We find that for pump pulses shorter than 1 ps, a significant detuning-dependent change in quantum-mechanical purity may be observed in silica. This shows that Raman scattering not only introduces noise, but can also drastically change the spectral correlations in photon pairs when pumped with short pulses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.