State estimation strategies play a critical role in obtaining accurate information about the state of dynamic systems as they develop. Such information can be important on its own and critical for precise and predictable control of such systems. The Kalman filter (KF) is a classic algorithm and among the most powerful tools in state estimation. The Kalman filter however can be sensitive to modeling uncertainty and sudden changes in system dynamics. The Smooth Variable Structure Filter (SVSF) is a relatively new estimation strategy that operates on variable structure concepts. In general, the SVSF has the advantage that is can be quite robust to modeling uncertainty and sudden fault conditions. Recent advancements to the SVSF, such as the addition of a covariance formulation, and the derivation of a time varying smoothing boundary layer (VBL), have allowed for combined SVSF-KF strategies. In a typical SVSF-KF approach, the VBL is used to detect the presence of a system fault, and switch from the more optimal KF gain to the more robust SVSF gain. While this approach has been proven effective in several cases, there are circumstances where the VBL will fail to indicate the presence of an ongoing fault. A new form of the SVSF-KF is proposed, based on the framework of the Multiple Model Adaptive Estimator.
Nonlinear estimation strategies are important for accurate and reliable control of robotic manipulators. This brief paper studies the application of estimation theory to a simple robotic manipulator. Two estimation techniques are considered: the classic extended Kalman filter (EKF), and the robust smooth variable structure filter (SVSF). The EKF is included to present a basic background in estimation techniques and the SVSF is described and implemented on the system. We simulate the SVSF applied to a dynamically modeled three-link robotic manipulator. The results of the paper demonstrate that nonlinear estimation techniques such as the SVSF can be applied effectively to robots with modeling uncertainty and external disturbances.
Unmanned aerial systems (UAS) are becoming increasingly visible in our daily lives; and range in operation from search and rescue, monitoring hazardous environments, and to the delivery of goods. One of the most popular UAS are based on a quad-rotor design. These are typically small devices that rely on four propellers for lift and movement. Quad-rotors are inherently unstable, and rely on advanced control methodologies to keep them operating safely and behaving in a predictable and desirable manner. The control of these devices can be enhanced and improved by making use of an accurate dynamic model. In this paper, we examine a simple quadrotor model, and note some of the additional dynamic considerations that were left out. We then compare simulation results of the simple model with that of another comprehensive model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.