While cooler giant planets are often observed with nonzero eccentricities, the short-period circular orbits of hot Jupiters suggest that they lose orbital energy and angular momentum due to tidal interactions with their host stars. However, orbital decay has never been unambiguously observed. We use data from Gaia Data Release 2 to show that hot Jupiter host stars have a smaller Galactic velocity dispersion than a similar population of stars without hot Jupiters. Since Galactic velocity dispersion is correlated with age, this observation implies that the population of hot Jupiter host stars is on average younger than the field population. The best explanation for this inference is that tidal interactions cause hot Jupiters to inspiral while their host stars are on the main sequence. This observation requires that the typical modified stellar tidal quality factor Q * for solar-type stars is in the range log 10 Q * 7.
There is an ongoing debate on whether hot jupiter hosts are more likely to be found in wide binaries with separations of ≳ 100 AU. In this paper, we search for comoving, very wide companions with separations of 103 − 104 AU for hot jupiter hosts and main-sequence contact binaries in Gaia DR2, and compare the very wide companion fractions with their object-by-object-matched field star samples. We find that 11.9 ± 2.5% of hot jupiter hosts and 14.1 ± 1.0% of contact binaries have companions at separations of 103 − 104 AU. While the very wide companion fraction of hot jupiter hosts is a factor of 1.9 ± 0.5 larger than their matched field star sample, it is consistent, within ∼1σ, with that of matched field stars if the matching is only with field stars without close companions (within ∼50 AU) as is the case for hot jupiter hosts. The very wide companion fraction of contact binaries is a factor of 3.1 ± 0.5 larger than their matched field star sample, suggesting that the formation and evolution of contact binaries are either tied to or correlated with the presence of wide companions. In contrast, the weak enhancement of very wide companion fraction for hot jupiter hosts implies that the formation of hot jupiters is not as sensitive to those environment properties. Our results also hint that the occurrence rates of dual hot jupiter hosts and dual contact binaries may be higher than the expected values from random pairing of field stars, which may be due to their underlying metallicity and age dependence.
It has been unambiguously shown both in individual systems and at the population level that hot Jupiters experience tidal inspiral before the end of their host stars’ main-sequence lifetimes. Ultra-short-period (USP) planets have orbital periods P < 1 day, rocky compositions, and are expected to experience tidal decay on similar timescales to hot Jupiters if the efficiency of tidal dissipation inside their host stars parameterized as is independent of P and/or secondary mass M p. Any difference between the two classes of systems would reveal that a model with constant is insufficient. If USP planets experience tidal inspiral, then USP planet systems will be relatively young compared to similar stars without USP planets. Because it is a proxy for relative age, we calculate the Galactic velocity dispersions of USP planet candidate host and non-host stars using data from Gaia Data Release 2 supplemented with ground-based radial velocities. We find that main-sequence USP planet candidate host stars have kinematics consistent with similar stars in the Kepler field without observed USP planets. This indicates that USP planet hosts have similar ages to field stars and that USP planets do not experience tidal inspiral during the main-sequence lifetimes of their host stars. The survival of USP planets requires that ≳ 107 at P ≈ 0.7 day and . This result demands that depend on the orbital period and/or mass of the secondary in the range days and .
It has been shown that hot Jupiters systems with massive, hot stellar primaries exhibit a wide range of stellar obliquities. On the other hand, hot Jupiter systems with low-mass, cool primaries often have stellar obliquities close to zero. Efficient tidal interactions between hot Jupiters and the convective envelopes present in lower-mass main-sequence stars have been a popular explanation for these observations. If this explanation is accurate, then aligned systems should be older than misaligned systems. Likewise, the convective envelope mass of a hot Jupiter’s host star should be an effective predictor of its obliquity. We derive homogeneous stellar parameters—including convective envelope masses—for hot Jupiter host stars with high-quality sky-projected obliquity inferences. Using a thin-disk stellar population’s Galactic velocity dispersion as a relative age proxy, we find that hot Jupiter host stars with larger-than-median obliquities are older than hot Jupiter host stars with smaller-than-median obliquities. The relative age difference between the two populations is larger for hot Jupiter host stars with smaller-than-median fractional convective envelope masses and is significant at the 3.6σ level. We identify stellar mass, not convective envelope mass, as the best predictor of stellar obliquity in hot Jupiter systems. The best explanation for these observations is that many hot Jupiters in misaligned systems arrived in the close proximity of their host stars long after their parent protoplanetary disks dissipated. The dependence of observed age offset on convective envelope mass suggests that tidal realignment contributes to the population of aligned hot Jupiters orbiting stars with convective envelopes.
I combine duplicate spectroscopic stellar parameter estimates in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 6 Low Resolution Spectral Survey A, F, G, and K Type stellar parameter catalog. Combining repeat measurements results in a factor of two improvement in the precision of the spectroscopic stellar parameter estimates. Moreover, this trivializes the process of performing coordinate-based cross-matching with other catalogs. Similarly, I combine duplicate stellar abundance estimates for the Xiang et al. catalog which was produced using LAMOST Data Release 5 Low Resolution Spectral Survey data. These data have numerous applications in stellar, galactic, and exoplanet astronomy. The catalogs I produce are available as machine-readable tables at https://doi.org/10.7281/T1/QISGRU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.