It has been hypothesized that α-synuclein (αS) misfolding may begin in peripheral nerves and spread to the central nervous system (CNS), leading to Parkinson disease and related disorders. Although recent data suggest that αS pathology can spread within the mouse brain, there is no direct evidence for spread of disease from a peripheral site. In the present study, we show that hind limb intramuscular (IM) injection of αS can induce pathology in the CNS in the human Ala53Thr (M83) and wild-type (M20) αS transgenic (Tg) mouse models. Within 2-3 mo after IM injection in αS homozygous M83 Tg mice and 3-4 mo for hemizygous M83 Tg mice, these animals developed a rapid, synchronized, and predictable induction of widespread CNS αS inclusion pathology, accompanied by astrogliosis, microgliosis, and debilitating motor impairments. In M20 Tg mice, starting at 4 mo after IM injection, we observed αS inclusion pathology in the spinal cord, but motor function remained intact. Transection of the sciatic nerve in the M83 Tg mice significantly delayed the appearance of CNS pathology and motor symptoms, demonstrating the involvement of retrograde transport in inducing αS CNS inclusion pathology. Outside of scrapie-mediated prion disease, to our knowledge, this findiing is the first evidence that an entire neurodegenerative proteinopathy associated with a robust, lethal motor phenotype can be initiated by peripheral inoculation with a pathogenic protein. Furthermore, this facile, synchronized rapid-onset model of α-synucleinopathy will be highly valuable in testing disease-modifying therapies and dissecting the mechanism(s) that drive αS-induced neurodegeneration.amyloid | Parkinson disease S ynucleinopathies are a group of diseases defined by the presence of amyloidogenic α-synuclein (αS) inclusions that can occur in neurons and glia of the central nervous system (CNS) (1-4). In Parkinson disease (PD), a causative role for αS has been established via the discovery of mutations in the αS gene SNCA resulting in autosomal-dominant PD (4-11). Although αS inclusions (e.g., Lewy bodies) are the hallmark pathology of PD, how they contribute to disease pathogenesis remains controversial (1,3,4,12).Postmortem studies have suggested that αS pathology may spread following neuroanatomical tracts (13-15) and between cells (16-18). αS pathology has also been found in the peripheral nervous system (PNS): for example, in the enteric and pelvic plexus (19,20). And it has been suggested that αS pathology might originate in the nerves of the PNS and spread to the CNS (14). Experimentally, it has been reported that intracerebral injections of preformed amyloidogenic αS fibrils in nontransgenic (nTg) and αS transgenic (Tg) mice induce the formation of intracellular αS inclusions that appear to progress from the site of injection (21-26). Collectively, these studies support the notion that αS inclusion pathology may propagate via a prion-like conformational self-templating mechanism (27, 28). A caveat of the direct intracerebral injection of αS is tha...
By unknown mechanisms, the symptoms of amyotrophic lateral sclerosis (ALS) seem to spread along neuroanatomical pathways to engulf the motor nervous system. The rate at which symptoms spread is one of the primary drivers of disease progression. One mechanism by which ALS symptoms could spread is by a prion-like propagation of a toxic misfolded protein from cell to cell along neuroanatomic pathways. Proteins that can transmit toxic conformations between cells often can also experimentally transmit disease between individual organisms. To survey the ease with which motor neuron disease (MND) can be transmitted, we injected spinal cord homogenates prepared from paralyzed mice expressing mutant superoxide dismutase 1 (SOD1-G93A and G37R) into the spinal cords of genetically vulnerable SOD1 transgenic mice. From the various models we tested, one emerged as showing high vulnerability. Tissue homogenates from paralyzed G93A mice induced MND in 6 of 10 mice expressing low levels of G85R-SOD1 fused to yellow fluorescent protein (G85R-YFP mice) by 3-11 months, and produced widespread spinal inclusion pathology. Importantly, second passage of homogenates from G93A → G85R-YFP mice back into newborn G85R-YFP mice induced disease in 4 of 4 mice by 3 months of age. Homogenates from paralyzed mice expressing the G37R variant were among those that transmitted poorly regardless of the strain of recipient transgenic animal injected, a finding suggestive of strain-like properties that manifest as differing abilities to transmit MND. Together, our data provide a working model for MND transmission to study the pathogenesis of ALS.
Prion strains are characterized by differences in the outcome of disease, most notably incubation period and neuropathological features. While it is established that the disease specific isoform of the prion protein, PrPSc, is an essential component of the infectious agent, the strain-specific relationship between PrPSc properties and the biological features of the resulting disease is not clear. To investigate this relationship, we examined the amplification efficiency and conformational stability of PrPSc from eight hamster-adapted prion strains and compared it to the resulting incubation period of disease and processing of PrPSc in neurons and glia. We found that short incubation period strains were characterized by more efficient PrPSc amplification and higher PrPSc conformational stabilities compared to long incubation period strains. In the CNS, the short incubation period strains were characterized by the accumulation of N-terminally truncated PrPSc in the soma of neurons, astrocytes and microglia in contrast to long incubation period strains where PrPSc did not accumulate to detectable levels in the soma of neurons but was detected in glia similar to short incubation period strains. These results are inconsistent with the hypothesis that a decrease in conformational stability results in a corresponding increase in replication efficiency and suggest that glia mediated neurodegeneration results in longer survival times compared to direct replication of PrPSc in neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.