The classical division of polymeric materials into thermoplastics and thermosets based on covalent network structure often implies that these categories are distinct and irreconcilable. Yet, the past two decades have seen extensive development of materials that bridge this gap through incorporation of dynamic crosslinks, enabling them to behave as both robust networks and moldable plastics. Although their potential utility is significant, the growth of covalent adaptable networks (CANs) has obscured the line between “thermoplastic” and “thermoset” and erected a conceptual barrier to the growing number of new researchers entering this discipline. This Perspective aims to both outline the fundamental theory of CANs and provide a critical assessment of their current status. We emphasize throughout that the unique properties of CANs emerge from the network chemistry, and particularly highlight the role that the crosslink exchange mechanism (i.e., dissociative exchange or associative exchange) plays in the resultant material properties under processing conditions. Predominant focus will be on thermally induced dynamic behavior, as the majority of presently employed exchange chemistries rely on thermal stimulus, and it is simple to apply to bulk materials. Lastly, this Perspective aims to identify current issues and address possible solutions for better fundamental understanding within this field.
Cross-linked networks feature exceptional chemical and mechanical resilience but consequently lack recyclability. Vitrimers have emerged as a class of materials that feature the robustness of thermosets and the recyclability of thermoplastics without compromising network integrity. Most examples of vitrimers have involved new polymers with exchangeable bonds within their backbones. In pursuit of a more universal, commercially viable route, we propose a method utilizing commercially available and inexpensive reagents to prepare vitrimers from vinyl monomer-derived prepolymers that contain cross-linkable βketoester functional groups. Controlled radical copolymerization of methyl methracrylate and (2-acetoacetoxy)ethyl methacrylate afforded linear prepolymers that were converted into vitrimers in a single step by treatment with a trifunctional amine. These materials displayed the characteristic features and reprocessability of vitrimers over as many as six (re)processing cycles. Critically, the networks prepared through this process largely retain the chemical and thermal properties of their linear counterparts, suggesting this method holds significant utility as a user-friendly and commercially relevant approach to the rational design of vitrimers with diverse properties.
In this report, we merge block copolymers with vitrimers in an effort to realize the prospect of higher-order, nanoscale control over associative cross-link exchange and flow. We show the use of controlled polymerization as a vital tool to understand fundamental structure−property effects through the precise control of polymer architecture and molecular weight. Vitrimers derived from self-assembling block copolymers exhibit superior resistance to macroscopic deformation in comparison to their analogs generated from statistical copolymers. Our results suggest that the enhanced creep resistance achieved by control over chain topology in block vitrimers can be used to tune viscoelastic properties. The resistance to macroscopic deformation that arises from a microphase-separated structure in this new class of materials differentiates block vitrimers from their statistical counterparts and introduces the potential of topology-control over viscoelastic flow.
We report a straightforward and scalable method for the generation of polystyrene-based vinylogous urethane vitrimers using conventional radical polymerization. The copolymerization of the commercially available and inexpensive monomers styrene and (2-acetoacetoxy)ethyl methacrylate produced β-ketoester-functional network precursors on a multigram scale, which could be cross-linked with diamines to yield thermally robust vitrimer materials. Vitrimers were (re)processed over three destruction/compression cycles with acid catalysis to overcome the effects of backbone entanglements. Lastly, the viscoelastic properties were investigated, revealing a higher activation energy for viscous flow (E a ) compared with previously prepared methacrylate-based analogs.
Thermosets composed of cross-linked polymers demonstrate enhanced thermal, solvent, chemical, and dimensional stability as compared to their non-cross-linked counterparts. However, these often-desirable material properties typically come at the expense of reprocessability, recyclability, and healability. One solution to this challenge comes from the construction of polymers that are reversibly cross-linked. We relied on lessons from Nature to present supramolecular polymer networks comprised of cooperative Janus-faced hydrogen bonded cross-links. A triazine-based guanine-cytosine base (GCB) with two complementary faces capable of self-assembly through three hydrogen bonding sites was incorporated into poly(butyl acrylate) to create a reprocessable and recyclable network. Rheological experiments and dynamic mechanical analysis (DMA) were employed to investigate the flow behavior of copolymers with randomly distributed GCB units of varying incorporation. Our studies revealed that the cooperativity of multiple hydrogen bonding faces yields excellent network integrity evidenced by a rubbery plateau that spanned the widest temperature range yet reported for any supramolecular network. To verify that each Janus-faced motif engages in multiple cross-links, we studied the effects of local concentration of the incorporated GCB units within the polymer chain. Mechanical strength improved by colocalizing the GCB within a block copolymer morphology. This enhanced performance revealed that the number of effective cross-links in the network increased with the local concentration of hydrogen bonding units. Overall, this study demonstrates that cooperative noncovalent interactions introduced through Janus-faced hydrogen bonding moieties confers excellent network stability and predictable viscoelastic flow behavior in supramolecular networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.