In this work, we present a highly scalable approach for numerically solving the Black-Scholes PDE in order to price basket options. Our method is based on a spatially adaptive sparse-grid discretization with finite elements. Since we cannot unleash the compute capabilities of modern many-core chips such as GPUs using the complexity-optimal Up-Down method, we implemented an embarrassingly parallel direct method. This operator is paired with a distributed memory parallelization using MPI and we achieved very good scalability results compared to the standard Up-Down approach. Since we exploit all levels of the operator's parallelism, we are able to achieve nearly perfect strong scaling for the Black-Scholes solver. Our results show that typical problem sizes (5 dimensional basket options), require at least 4 NVIDIA K20X Kepler GPUs (inside a Cray XK7) in order to be faster than the Up-Down scheme running on 16 Intel Sandy Bridge cores (one box). On a Cray XK7 machine we outperform our highly parallel Up-Down implementation by 55X with respect to time to solution. Both results emphasize the competitiveness of our proposed operator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.