In this paper a fast algorithm for computing the capacitance of a complicated 3-D geometry of ideal conductors in a uniform dielectric is described and its performance in the capacitance extractor FastCap is examined. The algorithm is an acceleration of the boundary-element technique for solving the integral equation associated with the multiconductor capacitance extraction problem. Boundary-element methods become slow when a large number of elements are used because they lead to dense matrix problems, which are typically solved with some form of Gaussian elimination. This implies that the computation grows as n3, where n is the number of panels or tiles needed to accurately discretize the conductor surface charges. In this paper we present a generalized conjugate residual iterative algorithm with a multipole approximation to compute the iterates. This combination reduces the complexity so that accurate multiconductor capacitance calculations grow nearly as nm, where m is the number of conductors. Performance comparisons on integrated circuit bus crossing problems show that for problems with as few as 12 conductors the multipole accelerated boundary element method can be nearly 500 times faster than Gaussian elimination based algorithms, and five to ten times faster than the iterative method alone, depending on required accuracy.
In this paper we present a new algorithm for accelerating the potential calculation which occurs in the inner loop of iterative algorithms for solving electromagnetic boundary integral equations. Such integral equations arise, for example, in the extraction of coupling capacitances in three-dimensional (3-D) geometries. We present extensive experimental comparisons with the capacitance extraction code FASTCAP [1] and demonstrate that, for a wide variety of geometries commonly encountered in integrated circuit packaging, on-chip interconnect and micro-electro-mechanical systems, the new "precorrected-FFT" algorithm is superior to the fast multipole algorithm used in FASTCAP in terms of execution time and memory use. At engineering accuracies, in terms of a speed-memory product, the new algorithm can be superior to the fast multipole based schemes by more than an order of magnitude.
Abstract-In this paper, we present an approach to nonlinear model reduction based on representing a nonlinear system with a piecewise-linear system and then reducing each of the pieces with a Krylov projection. However, rather than approximating the individual components as piecewise linear and then composing hundreds of components to make a system with exponentially many different linear regions, we instead generate a small set of linearizations about the state trajectory which is the response to a "training input." Computational results and performance data are presented for an example of a micromachined switch and selected nonlinear circuits. These examples demonstrate that the macromodels obtained with the proposed reduction algorithm are significantly more accurate than models obtained with linear or recently developed quadratic reduction techniques. Also, we propose a procedure for a posteriori estimation of the simulation error, which may be used to determine the accuracy of the extracted trajectory piecewise-linear reduced-order models. Finally, it is shown that the proposed model order reduction technique is computationally inexpensive, and that the models can be constructed "on the fly," to accelerate simulation of the system response.Index Terms-Microelectromechanical systems (MEMS), model order reduction, nonlinear analog circuits, nonlinear dynamical systems, piecewise-linear models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.