We investigate stability issues for steady states of the spherically symmetric Einstein–Vlasov system numerically in Schwarzschild, maximal areal, and Eddington–Finkelstein coordinates. Across all coordinate systems we confirm the conjecture that the first binding energy maximum along a one-parameter family of steady states signals the onset of instability. Beyond this maximum perturbed solutions either collapse to a black hole, form heteroclinic orbits, or eventually fully disperse. Contrary to earlier research, we find that a negative binding energy does not necessarily correspond to fully dispersing solutions. We also comment on the so-called turning point principle from the viewpoint of our numerical results. The physical reliability of the latter is strengthened by obtaining consistent results in the three different coordinate systems and by the systematic use of dynamically accessible perturbations.
Ensemble optimal control problems governed by a Fokker–Planck equation with space–time dependent controls are investigated. These problems require the minimisation of objective functionals of probability type and aim at determining robust control mechanisms for the ensemble of trajectories of the stochastic system defining the Fokker–Planck model. In this work, existence of optimal controls is proved and a detailed analysis of their characterization by first– and second–order optimality conditions is presented. For this purpose, the well–posedness of the Fokker–Planck equation, and new estimates concerning an inhomogeneous Fokker–Planck model are discussed, which are essential to prove the necessary regularity and compactness of the control–to–state map appearing in the first–and second–order analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.