We present WHERE ARE YOU? (WAY), a dataset of ∼6k dialogs in which two humans -an Observer and a Locator -complete a cooperative localization task. The Observer is spawned at random in a 3D environment and can navigate from first-person views while answering questions from the Locator. The Locator must localize the Observer in a detailed top-down map by asking questions and giving instructions. Based on this dataset, we define three challenging tasks: Localization from Embodied Dialog or LED (localizing the Observer from dialog history), Embodied Visual Dialog (modeling the Observer), and Cooperative Localization (modeling both agents). In this paper, we focus on the LED task -providing a strong baseline model with detailed ablations characterizing both dataset biases and the importance of various modeling choices. Our best model achieves 32.7% success at identifying the Observer's location within 3m in unseen buildings, vs. 70.4% for human Locators.
The identification of syllables within phonetic sequences is known as syllabification. This task is thought to play an important role in natural language understanding, speech production, and the development of speech recognition systems. The concept of the syllable is cross-linguistic, though formal definitions are rarely agreed upon, even within a language. In response, data-driven syllabification methods have been developed to learn from syllabified examples. These methods often employ classical machine learning sequence labeling models. In recent years, recurrence-based neural networks have been shown to perform increasingly well for sequence labeling tasks such as named entity recognition (NER), part of speech (POS) tagging, and chunking. We present a novel approach to the syllabification problem which leverages modern neural network techniques. Our network is constructed with long short-term memory (LSTM) cells, a convolutional component, and a conditional random field (CRF) output layer. Existing syllabification approaches are rarely evaluated across multiple language families. To demonstrate cross-linguistic generalizability, we show that the network is competitive with state of the art systems in syllabifying English, Dutch, Italian, French, Manipuri, and Basque datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.