CRISPR-Cas9 technology has accelerated biological research becoming routine for many laboratories. It is rapidly replacing conventional gene editing techniques and has high utility for both genome-wide and gene-focussed applications. Here we present the first individually cloned CRISPR-Cas9 genome wide arrayed sgRNA libraries covering 17,166 human and 20,430 mouse genes at a complexity of 34,332 sgRNAs for human and 40,860 sgRNAs for the mouse genome. For flexibility in generating stable cell lines the sgRNAs have been cloned in a lentivirus backbone containing PiggyBac transposase recognition elements together with fluorescent and drug selection markers. Over 95% of tested sgRNA induced specific DNA cleavage as measured by CEL-1 assays. Furthermore, sgRNA targeting GPI anchor protein pathway genes induced loss of function mutations in human and mouse cell lines measured by FLAER labelling. These arrayed libraries offer the prospect for performing screens on individual genes, combinations as well as larger gene sets. They also facilitate rapid deconvolution of signals from genome-wide screens. This set of vectors provide an organized comprehensive gene editing toolbox of considerable scientific value.
CRISPR technology has opened up many diverse genome editing possibilities in human somatic cells, but has been limited in the therapeutic realm by both potential off-target effects and low genome modification efficiencies. Recent advancements to combat these limitations include delivering Cas9 nucleases directly to cells as highly purified ribonucleoproteins (RNPs) instead of the conventional plasmid DNA and RNA-based approaches. Here, we extend RNP-based delivery in cell culture to a less characterized CRISPR format which implements paired Cas9 nickases. The use of paired nickase Cas9 RNP system, combined with a GMP-compliant non-viral delivery technology, enables editing in human cells with high specificity and high efficiency, a development that opens up the technology for further exploration into a more therapeutic role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.