BackgroundAfter central nervous system injury, inflammatory macrophages (M1) predominate over anti-inflammatory macrophages (M2). The temporal profile of M1/M2 phenotypes in macrophages and microglia after traumatic brain injury (TBI) in rats is unknown. We subjected female rats to severe controlled cortical impact (CCI) and examined the postinjury M1/M2 time course in their brains.MethodsThe motor cortex (2.5 mm left laterally and 1.0 mm anteriorly from the bregma) of anesthetized female Wistar rats (ages 8 to 10 weeks; N = 72) underwent histologically moderate to severe CCI with a 5-mm impactor tip. Separate cohorts of rats had their brains dissociated into cells for flow cytometry, perfusion-fixed for immunohistochemistry (IHC) and ex vivo magnetic resonance imaging or flash-frozen for RNA and protein analysis. For each analytical method used, separate postinjury times were included for 24 hours; 3 or 5 days; or 1, 2, 4 or 8 weeks.ResultsBy IHC, we found that the macrophagic and microglial responses peaked at 5 to 7 days post-TBI with characteristics of mixed populations of M1 and M2 phenotypes. Upon flow cytometry examination of immunological cells isolated from brain tissue, we observed that peak M2-associated staining occurred at 5 days post-TBI. Chemokine analysis by multiplex assay showed statistically significant increases in macrophage inflammatory protein 1α and keratinocyte chemoattractant/growth-related oncogene on the ipsilateral side within the first 24 hours after injury relative to controls and to the contralateral side. Quantitative RT-PCR analysis demonstrated expression of both M1- and M2-associated markers, which peaked at 5 days post-TBI.ConclusionsThe responses of macrophagic and microglial cells to histologically severe CCI in the female rat are maximal between days 3 and 7 postinjury. The response to injury is a mixture of M1 and M2 phenotypes.
Objective Metrics of diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) can detect diffuse axonal injury in traumatic brain injury (TBI). The relationship between the changes of these imaging measures and the underlying pathologies is still relatively unknown. This study investigated the radiological-pathological correlation between these imaging techniques and immunohistochemistry using a closed head rat model of TBI. Methods TBI was performed on female rats followed longitudinally by MRI out to 30 days post-injury, with a subset of animals selected for histopathological analyses. A MRI-based finite element analysis was generated to characterize the pattern of the mechanical insult and estimate the extent of brain injury to direct the pathological correlation with imaging findings. Results DTI axial diffusivity and fractional anisotropy (FA) were sensitive to axonal integrity, while radial diffusivity showed significant correlation to the myelin compactness. FA was correlated to astrogliosis in the gray matter while mean diffusivity was correlated to increased cellularity. Secondary inflammatory responses also partly affected the changes of these DTI metrics. The magnetization transfer ratio (MTR) at 3.5 ppm demonstrated a strong correlation with both axon and myelin integrity. Decrease in MTR at 20 ppm correlated with the extent of astrogliosis in both gray and white matter. Interpretation While conventional T2-weighted MRI did not detect abnormalities following TBI, DTI and MTI afforded complementary insight into the underlying pathologies reflecting varying injury states over time, thus may substitute for histology to reveal DAI pathologies in vivo. This correlation of MRI and histology furthers understanding of the microscopic pathology underlying DTI and MTI changes in TBI.
Wistar rats are widely used in biomedical research and commonly serve as a model organism in neuroscience studies. In most cases when noninvasive imaging is not utilized, studies assume a consistent baseline condition in rats that lack visible differences. While performing a series of traumatic brain injury studies, we discovered mild spontaneous ventriculomegaly in 70/162 (43.2%) of Wistar rats that had been obtained from 2 different vendors. Advanced magnetic resonance (MR) imaging techniques, including MR angiography and diffusion tensor imaging, were utilized to evaluate the rats. Multiple neuropathologic abnormalities, including presumed arteriovenous malformations, aneurysms, cysts, white matter lesion and astrogliosis were found in association with ventriculomegaly. Postmortem micro-CT and immunohistochemical staining confirmed the presence of aneurysms and arteriovenous malformations. Diffusion tensor imaging significant decreases in fractional anisotropy and increases in mean diffusivity, axial diffusivity, and radial diffusivity in multiple white matter tracts (p < 0.05). These results could impact the interpretation, e.g. of a pseudo-increase of axon integrity and a pseudo-decrease of myelin integrity, based on characteristics intrinsic to rats with ventriculomegaly. We suggest the use of baseline imaging to prevent the inadvertent introduction of a high degree of variability in preclinical studies of neurological disease or injury in the Wistar rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.