We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR < 0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29 ± 0.01, over-estimating stenosis severity as compared to 0.42 ± 0.01 (p < 0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50 ± 0.04 falsely indicating an actionable ischemic condition in a healthy territory. This ratio was 1.00 ± 0.08 at 70 keV. Results suggest that projection-based keV imaging with the SDCT system and proper processing could enable useful myocardial CTP, much improved over conventional CT.
In this work, we clarified the role of acquisition parameters and quantification methods in myocardial blood flow (MBF) estimability for myocardial perfusion imaging using CT (MPI-CT). We used a physiologic model with a CT simulator to generate time-attenuation curves across a range of imaging conditions, i.e. tube current-time product, imaging duration, and temporal sampling, and physiologic conditions, i.e. MBF and arterial input function width. We assessed MBF estimability by precision (interquartile range of MBF estimates) and bias (difference between median MBF estimate and reference MBF) for multiple quantification methods. Methods included: six existing model-based deconvolution models, such as the plug-flow tissue uptake model (PTU), Fermi function model, and single-compartment model (SCM); two proposed robust physiologic models (RPM1, RPM2); model-independent singular value decomposition with Tikhonov regularization determined by the L-curve criterion (LSVD); and maximum upslope (MUP). Simulations show that MBF estimability is most affected by changes in imaging duration for model-based methods and by changes in tube current-time product and sampling interval for model-independent methods. Models with three parameters, i.e. RPM1, RPM2, and SCM, gave least biased and most precise MBF estimates. The average relative bias (precision) for RPM1, RPM2, and SCM was ⩽11% (⩽10%) and the models produced high-quality MBF maps in CT simulated phantom data as well as in a porcine model of coronary artery stenosis. In terms of precision, the methods ranked best-to-worst are: RPM1 > RPM2 > Fermi > SCM > LSVD > MUP [Formula: see text] other methods. In terms of bias, the models ranked best-to-worst are: SCM > RPM2 > RPM1 > PTU > LSVD [Formula: see text] other methods. Models with four or more parameters, particularly five-parameter models, had very poor precision (as much as 310% uncertainty) and/or significant bias (as much as 493%) and were sensitive to parameter initialization, thus suggesting the presence of multiple local minima. For improved estimates of MBF from MPI-CT, it is recommended to use reduced models that incorporate prior knowledge of physiology and contrast agent uptake, such as the proposed RPM1 and RPM2 models.
Myocardial CT perfusion (CTP) imaging is an application that should greatly benefit from spectral CT through the significant reduction of beam hardening (BH) artifacts using mono-energetic (monoE) image reconstructions. We used a prototype spectral detector CT (SDCT) scanner (Philips Healthcare) and developed advanced processing tools (registration, segmentation, and deconvolution-based flow estimation) for quantitative myocardial CTP in a porcine ischemia model with different degrees of coronary occlusion using a balloon catheter. The occlusion severity was adjusted with fractional flow reserve (FFR) measurements. The SDCT scanner is a single source, dual-layer detector system, which allows simultaneous acquisitions of low and high energy projections, hence enabling accurate projection-based material decomposition and effective reduction of BH-artifacts. In addition, the SDCT scanner eliminates partial scan artifacts with fast (0.27s), full gantry rotation acquisitions. We acquired CTP data under different hemodynamic conditions and reconstructed conventional 120kVp images and projection-based monoenergetic (monoE) images for energies ranging from 55keV-to-120keV. We computed and compared myocardial blood flow (MBF) between different reconstructions. With balloon completely deflated (FFR=1), we compared the mean attenuation in a myocardial region of interest before iodine arrival and at peak iodine enhancement in the left ventricle (LV), and we found that monoE images at 70keV effectively minimized the difference in attenuation, due to BH, to less than 1 HU compared to 14 HU with conventional 120kVp images. Flow maps under baseline condition (FFR=1) were more uniform throughout the myocardial wall at 70keV, whereas with 120kVp data about 12% reduction in blood flow was noticed on BH-hypoattenuated areas compared to other myocardial regions. We compared MBF maps at different keVs under an ischemic condition (FFR < 0.7), and we found that flow-contrast-to-noise-ratio (CNR f) between LAD ischemic and remote healthy territories attains its maximum (2.87 ± 0.7) at 70keV. As energies diverge from 70keV, we
Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3±19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5±28.3mL/min/100g and 78.3±25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.
Purpose Computed tomography myocardial perfusion imaging (CT‐MPI) and coronary CTA have the potential to make CT an ideal noninvasive imaging gatekeeper exam for invasive coronary angiography. However, beam hardening (BH) artifacts prevent accurate blood flow calculation in CT‐MPI. BH correction methods require either energy‐sensitive CT, not widely available, or typically, a calibration‐based method in conventional CT. We propose a calibration‐free, automatic BH correction (ABHC) method suitable for CT‐MPI and evaluate its ability to reduce BH artifacts in single “static‐perfusion” images and to create accurate myocardial blood flow (MBF) in dynamic CT‐MPI. Methods In the algorithm, we used input CT DICOM images and iteratively optimized parameters in a polynomial BH correction until a BH‐sensitive cost function was minimized on output images. An input image was segmented into a soft tissue image and a highly attenuating material (HAM) image containing bones and regions of high iodine concentrations, using mean HU and temporal enhancement properties. We forward projected HAM, corrected projection values according to a polynomial correction, and reconstructed a correction image to obtain the current iteration's BH corrected image. The cost function was sensitive to BH streak artifacts and cupping. We evaluated the algorithm on simulated CT and physical phantom images, and on preclinical porcine with optional coronary obstruction and clinical CT‐MPI data. Assessments included measures of BH artifact in single images as well as MBF estimates. We obtained CT images on a prototype spectral detector CT (SDCT, Philips Healthcare) scanner that provided both conventional and virtual keV images, allowing us to quantitatively compare corrected CT images to virtual keV images. To stress test the method, we evaluated results on images from a different scanner (iCT, Philips Healthcare) and different kVp values. Results In a CT‐simulated digital phantom consisting of water with iodine cylinder insets, BH streak artifacts between simulated iodine inserts were reduced from 13 ± 2 to 0 ± 1 HU. In a similar physical phantom having higher iodine concentrations, BH streak artifacts were reduced from 48 ± 6 to 1 ± 5 HU and cupping was reduced by 86%, from 248 to 23 HU. In preclinical CT‐MPI images without coronary obstruction, BH artifact was reduced from 24 ± 6 HU to less than 5 ± 4 HU at peak enhancement. Standard deviation across different regions of interest (ROI) along the myocardium was reduced from 13.26 to 6.86 HU for ABHC, comparing favorably to measurements in the corresponding virtual keV image. Corrections greatly reduced variations in preclinical MBF maps as obtained in normal animals without obstruction (FFR = 1). Coefficients of variations were 22% (conventional CT), 9% (ABHC), and 5% (virtual keV). Moreover, variations in flow tended to be localized after ABHC, giving result which would not be confused with a flow deficit in a coronary vessel...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.