Diffusion Monte Carlo provides an effective and efficient approach for calculating ground state properties of molecular systems based on potential energy surfaces. The approach has been shown to require increasingly large ensembles when intra- and intermolecular vibrations are weakly coupled. We recently proposed a guided variant of diffusion Monte Carlo to address these challenges for water clusters [J. Phys. Chem. A201912380638070]. In the present study, we extend this approach and apply it to more strongly bound molecular ions, specifically CH5 + and H+(H2O) n=1–4. For the protonated water systems, we show that the guided DMC approach that was developed for studies of (H2O) n can be used to describe the OH stretches and HOH bends in the solvating water molecules, as well as the free OH stretches in the hydronium core. For the hydrogen bonded OH stretches in the H3O+ core of H+(H2O) n and the CH stretches in CH5 +, we develop adaptive guiding functions based on the instantaneous structure of the ion of interest. Using these guiding functions, we demonstrate that we are able to obtain converged zero-point energies and ground state wave functions using ensemble sizes that are as small as 10% the size that is needed to obtain similar accuracy from unguided calculations.
Diffusion quantum Monte Carlo (DMC) provides a powerful approach for obtaining the ground state energy and wave function of molecules, ions, and molecular clusters. The approach is uniquely well suited for studies of fluxional molecules, which undergo large amplitude vibrational motions even in their ground state. In contrast to the electronic structure problem, where the wave function must be antisymmetric with respect to exchange of any pair of electrons, the wave function for the ground vibrational state is nodeless. This greatly simplifies the application of DMC for vibrational problems. Because there is not a single potential function that can be used to describe the intramolecular and intermolecular interactions in all molecular systems, most methods that are used to describe nuclear quantum effects rely on a carefully chosen zero-order description of the molecular vibrations. In contrast, DMC calculations can be performed in Cartesian coordinates, making the DMC algorithm easily transferable between different chemical systems. In this contribution, the theory that underlies DMC will be discussed along with important considerations for performing DMC calculations. Extensions for evaluating vibrationally excited states and molecular properties are also discussed. Insights that can be obtained from DMC calculations are illustrated in the context of the protonated water clusters.
An approach for evaluating spectra from ground state probability amplitudes (GSPA) obtained from diffusion Monte Carlo (DMC) simulations is extended to improve the description of excited state energies and allow for coupling among vibrational excited states. This approach is applied to studies of the protonated water trimer and tetramer, and their deuterated analogs. These ions provide models for solvated hydronium, and analysis of these spectra provides insights into spectral signatures of proton transfer in aqueous environments. In this approach, we obtain a separable set of internal coordinates from the DMC ground state probability amplitude. A basis is then developed from products of the DMC ground state wave function and low-order polynomials in these internal coordinates. This approach provides a compact basis in which the Hamiltonian and dipole moment matrix are evaluated and used to obtain the spectrum. The resulting spectra are in good agreement with experiment and in many cases provide comparable agreement to the results obtained using much larger basis sets. In addition, the compact basis allows for interpretation of the spectral features and how they evolve with cluster size and deuteration.
The isomerization pathway between the energetically low-lying Zundel and Eigen isomers of the protonated water hexamer was investigated using high-level ab initio calculations including a treatment of zero-point corrections. On the basis of these calculations, the Zundel−Eigen isomerization was found to proceed through a stable intermediate isomer, which consists of a four-membered ring with two single acceptor water molecules. The inclusion of vibrational zero-point energy is shown to be important for accurately establishing the relative energies of the three relevant isomers involved in the Zundel−Eigen isomerization. Diffusion Monte Carlo calculations including anharmonic vibrational effects show that all three isomers of H + (H 2 O) 6 and D + (D 2 O) 6 have well-defined structures. The energetic ordering of the three isomers changes upon deuteration. The implications of these results for the vibrational spectra of H + (H 2 O) 6 and D + (D 2 O) 6 are also discussed.
A machine-learning based approach for evaluating potential energies for quantum mechanical studies of properties of the ground and excited vibrational states of small molecules is developed. This approach uses the molecular-orbital-based machine learning (MOB-ML) method to generate electronic energies with the accuracy of CCSD(T) calculations at the same cost as a Hartree–Fock calculation. To further reduce the computational cost of the potential energy evaluations without sacrificing the CCSD(T) level accuracy, GPU-accelerated Neural Network Potential Energy Surfaces (NN-PES) are trained to geometries and energies that are collected from small-scale Diffusion Monte Carlo (DMC) simulations, which are run using energies evaluated using the MOB-ML model. The combined NN+(MOB-ML) approach is used in variational calculations of the ground and low-lying vibrational excited states of water and in DMC calculations of the ground states of water, CH5 +, and its deuterated analogues. For both of these molecules, comparisons are made to the results obtained using potentials that were fit to much larger sets of electronic energies than were required to train the MOB-ML models. The NN+(MOB-ML) approach is also used to obtain a potential surface for C2H5 +, which is a carbocation with a nonclassical equilibrium structure for which there is currently no available potential surface. This potential is used to explore the CH stretching vibrations, focusing on those of the bridging hydrogen atom. For both CH5 + and C2H5 + the MOB-ML model is trained using geometries that were sampled from an AIMD trajectory, which was run at 350 K. By comparison, the structures sampled in the ground state calculations can have energies that are as much as ten times larger than those used to train the MOB-ML model. For water a higher temperature AIMD trajectory is needed to obtain accurate results due to the smaller thermal energy. A second MOB-ML model for C2H5 + was developed with additional higher energy structures in the training set. The two models are found to provide nearly identical descriptions of the ground state of C2H5 +.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.