Patients with early infantile epileptic encephalopathy (EIEE) experience severe seizures and cognitive impairment and are at increased risk for sudden unexpected death in epilepsy (SUDEP). EIEE13 [Online Mendelian Inheritance in Man (OMIM) # 614558] is caused by de novo missense mutations in the voltage-gated sodium channel gene SCN8A. Here, we investigated the neuronal phenotype of a mouse model expressing the gain-of-function SCN8A patient mutation, p.Asn1768Asp (Na v 1.6-N1768D). Our results revealed regional and neuronal subtype specificity in the effects of the N1768D mutation. Acutely dissociated hippocampal neurons from Scn8a N1768D/+ mice showed increases in persistent sodium current (I Na ) density in CA1 pyramidal but not bipolar neurons. In CA3, I Na,P was increased in both bipolar and pyramidal neurons. Measurement of action potential (AP) firing in Scn8a N1768D/+ pyramidal neurons in brain slices revealed early afterdepolarization (EAD)-like AP waveforms in CA1 but not in CA3 hippocampal or layer II/III neocortical neurons. The maximum spike frequency evoked by depolarizing current injections in Scn8a N1768D/+ CA1, but not CA3 or neocortical, pyramidal cells was significantly reduced compared with WT. Spontaneous firing was observed in subsets of neurons in CA1 and CA3, but not in the neocortex. The EAD-like waveforms of Scn8a N1768D/+ CA1 hippocampal neurons were blocked by tetrodotoxin, riluzole, and SN-6, implicating elevated persistent I Na and reverse mode Na/Ca exchange in the mechanism of hyperexcitability. Our results demonstrate that Scn8a plays a vital role in neuronal excitability and provide insight into the mechanism and future treatment of epileptogenesis in EIEE13.sodium channel | epilepsy | mouse model | action potential | Na/Ca exchange
Voltage gated sodium channels (VGSCs) were first identified in terms of their role in the upstroke of the action potential. The underlying proteins were later identified as saxitoxin and scorpion toxin receptors consisting of α and β subunits. We now know that VGSCs are heterotrimeric complexes consisting of a single pore forming α subunit joined by two β subunits; a noncovalently linked β1 or β3 and a covalently linked β2 or β4 subunit. VGSC α subunits contain all the machinery necessary for channel cell surface expression, ion conduction, voltage sensing, gating, and inactivation, in one central, polytopic, transmembrane protein. VGSC β subunits are more than simple accessories to α subunits. In the more than two decades since the original cloning of β1, our knowledge of their roles in physiology and pathophysiology has expanded immensely. VGSC β subunits are multifunctional. They confer unique gating mechanisms, regulate cellular excitability, affect brain development, confer distinct channel pharmacology, and have functions that are independent of the α subunits. The vast array of functions of these proteins stems from their special station in the channelome: being the only known constituents that are cell adhesion and intra/extracellular signaling molecules in addition to being part of channel complexes. This functional trifecta and how it goes awry demonstrates the power outside the pore in ion channel signaling complexes, broadening the term channelopathy beyond defects in ion conduction. This article is part of the Special Issue entitled 'Channelopathies.'
GABAergic circuits are critical for the synchronization and higher order function of brain networks. Defects in this circuitry are linked to neuropsychiatric diseases, including bipolar disorder, schizophrenia, and autism. Work in cultured neurons has shown that ankyrin-G plays a key role in the regulation of GABAergic synapses on the axon initial segment and somatodendritic domain of pyramidal neurons where it interacts directly with the GABA A receptor associated protein (GABARAP) to stabilize cell surface GABA A receptors. Here, we generated a knock-in mouse model expressing a mutation that abolishes the ankyrin-G/GABARAP interaction ( Ank3 W1989R) to understand how ankyrin-G and GABARAP regulate GABAergic circuitry in vivo. We found that Ank3 W1989R mice exhibit a striking reduction in forebrain GABAergic synapses resulting in pyramidal cell hyperexcitability and disruptions in network synchronization. In addition, we identified changes in pyramidal cell dendritic spines and axon initial segments consistent with compensation for hyperexcitability. Finally, we identified the ANK3 W1989R variant in a family with bipolar disorder, suggesting a potential role of this variant in disease. Our results highlight the importance of ankyrin-G in regulating forebrain circuitry and provide novel insights into how ANK3 loss-of-function variants may contribute to human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.