Biologists have long recognized that dramatic bending of a cell sheet may be driven by even modest shrinking of the apical sides of cells. Cell shape changes and tissue movements like these are at the core of many of the morphogenetic movements that shape animal form during development, driving processes such as gastrulation, tube formation and neurulation. The mechanisms of such cell shape changes must integrate developmental patterning information in order to spatially and temporally control force production -- issues that touch on fundamental aspects of both cell and developmental biology and on birth defects research. How does developmental patterning regulate force-producing mechanisms, and what roles do such mechanisms play in development? Work on apical constriction from multiple systems including Drosophila, C. elegans, sea urchin, Xenopus, chick and mouse has begun to illuminate these issues. Here, we review this effort to explore the diversity of mechanisms of apical constriction, the diversity of roles that apical constriction plays in development, and the common themes that emerge from comparing systems.
This review summarizes our current understanding of exocrine pancreas development, including the formation of acinar, ductal and centroacinar cells. We discuss the transcription factors associated with various stages of exocrine differentiation, from multipotent progenitor cells to fully differentiated acinar and ductal cells. Within the branching epithelial tree of the embryonic pancreas, this involves the progressive restriction of multipotent pancreatic progenitor cells to either a central “trunk” domain giving rise to the islet and ductal lineages, or a peripheral “tip” domain giving rise to acinar cells. This review also discusses the soluble morphogens and other signaling pathways that influence these events. Finally, we examine centroacinar cells as an enigmatic pancreatic cell type whose lineage remains uncertain, and whose possible progenitor capacities continue to be explored.
Morphogenesis is an important component of animal development. Genetic redundancy has been proposed to be common among morphogenesis genes, posing a challenge to the genetic dissection of morphogenesis mechanisms. Genetic redundancy is more generally a challenge in biology, as large proportions of the genes in diverse organisms have no apparent loss of function phenotypes. Here, we present a screen designed to uncover redundant and partially redundant genes that function in an example of morphogenesis, gastrulation in Caenorhabditis elegans. We performed an RNA interference (RNAi) enhancer screen in a gastrulation-sensitized double-mutant background, targeting genes likely to be expressed in gastrulating cells or their neighbors. Secondary screening identified 16 new genes whose functions contribute to normal gastrulation in a nonsensitized background. We observed that for most new genes found, the closest known homologs were multiple other C. elegans genes, suggesting that some may have derived from rounds of recent gene duplication events. We predict that such genes are more likely than single copy genes to comprise redundant or partially redundant gene families. We explored this prediction for one gene that we identified and confirmed that this gene and five close relatives, which encode predicted substrate recognition subunits (SRSs) for a CUL-2 ubiquitin ligase, do indeed function partially redundantly with each other in gastrulation. Our results implicate new genes in C. elegans gastrulation, and they show that an RNAi-based enhancer screen in C. elegans can be used as an efficient means to identify important but redundant or partially redundant developmental genes.
The tricho-rhino-phalangeal syndromes (TRPS type I, II, and III) are autosomal dominant disorders sharing the following characteristics: slowly growing and sparse scalp hair, medially thick and laterally thin eyebrows, bulbous tip of the nose, long flat philtrum, thin upper lip with vermilion border, and protruding ears. In addition, individuals with TRPS generally share skeletal and bone anomalies, including shortening of the phalanges and metacarpals (mild to severe brachydactyly), cone-shaped epiphyses, hip dysplasia, and short stature. The etiology of the different types of TRPS can result from either single base pair mutations, or the complete deletion of the TRPS1 gene, which encodes a zinc-finger transcription factor located on chromosomal band 8q24.1. We have identified nine heterozygous mutations, five novel and four recurrent, in unrelated families diagnosed with TRPS. The five novel mutations identified show 1-or 2-bp deletions and a single base substitution, whereas all of the recurrent mutations are single base substitutions. Seven of the nine mutations result in a premature stop codon, leading to a truncated, nonfunctional TRPS1 protein. The final two mutations are missense mutations in the GATA DNA binding zinc finger, which is believed to be important for the protein's normal function.
PSD-95 (Dlg4) is an ionotropic glutamate receptor scaffolding protein essential in synapse stability and neurotransmission. PSD-95 levels are reduced during aging and in neurodegenerative diseases like Huntington’s disease (HD), and it is believed to contribute to synaptic dysfunction and behavioral deficits. However, the mechanism responsible for PSD-95 dysregulation under these conditions is unknown. The Heat Shock transcription Factor 1 (HSF1), canonically known for its role in protein homeostasis, is also depleted in both aging and HD. Synaptic protein levels, including PSD-95, are influenced by alterations in HSF1 levels and activity, but the direct regulatory relationship between PSD-95 and HSF1 has yet to be determined. Here, we showed that HSF1 chronic or acute reduction in cell lines and mice decreased PSD-95 expression. Furthermore, Hsf1(+/−) mice had reduced PSD-95 synaptic puncta that paralleled a loss in thalamo-striatal excitatory synapses, an important circuit disrupted early in HD. We demonstrated that HSF1 binds to regulatory elements present in the PSD-95 gene and directly regulates PSD-95 expression. HSF1 DNA-binding on the PSD-95 gene was disrupted in an age-dependent manner in WT mice and worsened in HD cells and mice, leading to reduced PSD-95 levels. These results demonstrate a direct role of HSF1 in synaptic gene regulation that has important implications in synapse maintenance in basal and pathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.