We present bundled references, a new building block to provide linearizable range query operations for highly concurrent lock-based linked data structures. Bundled references allow range queries to traverse a path through the data structure that is consistent with the target atomic snapshot. We demonstrate our technique with three data structures: a linked list, skip list, and a binary search tree. Our evaluation reveals that in mixed workloads, our design can improve upon the state-of-the-art techniques by 1.2x-1.8x for a skip list and 1.3x-3.7x for a binary search tree. We also integrate our bundled data structure into the DBx1000 in-memory database, yielding up to 40% gain over the same competitors.
Remote data structures built with one-sided Remote Direct Memory Access (RDMA) are at the heart of many disaggregated database management systems today. Concurrent access to these data structures by thousands of remote workers necessitates a highly efficient synchronization scheme. Remarkably, our investigation reveals that existing synchronization schemes display substantial variations in performance and scalability. Even worse, some schemes do not correctly synchronize, resulting in rare and hard-to-detect data corruption. Motivated by these observations, we conduct the first comprehensive analysis of one-sided synchronization techniques and provide general principles for correct synchronization using one-sided RDMA. Our research demonstrates that adherence to these principles not only guarantees correctness but also results in substantial performance enhancements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.