We present a new open repository for chemical reactions on catalytic surfaces, available at https://www.catalysis-hub.org . The featured database for surface reactions contains more than 100,000 chemisorption and reaction energies obtained from electronic structure calculations, and is continuously being updated with new datasets. In addition to providing quantum-mechanical results for a broad range of reactions and surfaces from different publications, the database features a systematic, large-scale study of chemical adsorption and hydrogenation on bimetallic alloy surfaces. The database contains reaction specific information, such as the surface composition and reaction energy for each reaction, as well as the surface geometries and calculational parameters, essential for data reproducibility. By providing direct access via the web-interface as well as a Python API, we seek to accelerate the discovery of catalytic materials for sustainable energy applications by enabling researchers to efficiently use the data as a basis for new calculations and model generation.
The effects of varying alkaline electrolyte and electrolyte Fe levels on the performance and active-phase structure of NiOOH thin films for catalysis of the oxygen evolution reaction were studied. An electrolyte effect on catalytic performance was observed. Under purified conditions, current densities followed the trend Cs+ > K+ ≈ Na+ ≈ Li+ at current densities > 1 mA/cm2. Under Fe-saturated conditions, current densities followed the trend K+ ≈ Na+ > Cs+ > Li+ at all current densities. Voltammetry was coupled with Raman spectroscopy for studies in LiOH and CsOH. Raman spectra were fit to Gaussian functions and analyzed quantitatively based on mean peak positions. Both purified and Fe-saturated CsOH promoted slightly lower peak positions than purified and Fe-saturated LiOH, indicating that CsOH promoted a NiOOH active-phase structure with longer Ni–O bonds. Both Fe-saturated CsOH and LiOH promoted slightly lower Raman peak positions than purified CsOH and LiOH, but only for one of the two Raman peaks. These results indicate that Fe promoted an active-phase structure with slightly longer Ni–O bonds. This study shows that the catalytic performance and active-phase structure of NiOOH can be tuned by simply varying the alkaline electrolyte and electrolyte Fe levels.
A comprehensive database of chemical properties on a vast set of transition metal surfaces has the potential to accelerate the discovery of novel catalytic materials for energy and industrial applications. In this data descriptor, we present such an extensive study of chemisorption properties of important adsorbates - e.g., C, O, N, H, S, CH x , OH, NH, and S H - on 2,035 bimetallic alloy surfaces in 5 different stoichiometric ratios, i.e., 0%, 25%, 50%, 75%, and 100%. To our knowledge, it is the first systematic study to compile the adsorption properties of such a well-defined, large chemical space of catalytic interest. We propose that a collection of catalytic properties of this magnitude can assist with the development of machine learning enabled surrogate models in theoretical catalysis research to design robust catalysts with high activity for challenging chemical transformations. This database is made publicly available through the platform www.Catalysis-hub.org for easy retrieval of the data for further scientific analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.