Construction of artificial higher order protein complexes allows sampling of structural architectures and functional features not accessible by classical monomeric proteins. Here, we combine in silico modelling with expanded genetic code facilitated strain promoted azide-alkyne cycloaddition to construct artificial complexes that are structurally integrated protein dimers and demonstrate functional synergy. Using fluorescent proteins sfGFP and Venus as models, homodimers and heterodimers are constructed that switched ON once assembled and display enhanced spectral properties. Symmetrical crosslinks are found to be important for functional enhancement. The determined molecular structure of one artificial dimer shows that a new long-range polar network comprised mostly of organised water molecules links the two chromophores leading to activation and functional enhancement. Single molecule analysis reveals the dimer is more resistant to photobleaching spending longer times in the ON state. Thus, genetically encoded bioorthogonal chemistry can be used to generate truly integrated artificial protein complexes that enhance function.
Fluorescent proteins (FPs) are commonly used in pairs to monitor dynamic biomolecular events through changes in proximity via distance dependent processes such as Förster resonance energy transfer (FRET). The impact of FP association is assessed by predicting dimerization sites in silico and stabilizing the dimers by bio-orthogonal covalent linkages. In each tested case dimerization changes inherent fluorescence, including FRET. GFP homodimers demonstrate synergistic behavior with the dimer being brighter than the sum of the monomers. The homodimer structure reveals the chromophores are close with favorable transition dipole alignments and a highly solvated interface. Heterodimerization (GFP with Venus) results in a complex with ≈87% FRET efficiency, significantly below the 99.7% efficiency predicted. A similar efficiency is observed when the wild-type FPs are fused to a naturally occurring protein-protein interface system. GFP complexation with mCherry results in loss of mCherry fluorescence. Thus, simple assumptions used when monitoring interactions between proteins via FP FRET may not always hold true, especially under conditions whereby the protein-protein interactions promote FP interaction.
The previously published version of this Article contained a consequential error in the fourth sentence of the "Discussion", which incorrectly read 'The use of the azF-SCO crosslink proved important as classical disulfide crosslinking did improve protein function'. The correct version states 'The use of the azF-SCO crosslink proved important as classical disulfide crosslinking did not improve protein function'-the word 'not' has been added as the 14th word. This has been corrected in both the PDF and HTML versions of the Article.
Fluorescent proteins (FPs) are commonly used in pairs to monitor dynamic biomolecular events through changes in their proximity via distance dependent processes such as Förster resonance energy transfer (FRET). Many FPs have a tendency to oligomerise, which is likely to be promoted through attachment to associating proteins through increases in local FP concentration. We show here that on association of FP pairs, the inherent function of the FPs can alter. Artificial dimers were constructed using a bioorthogonal Click chemistry approach that combined a commonly used green fluorescent protein (superfolder GFP) with itself, a yellow FP (Venus) or a red FP (mCherry). In each case dimerisation changes the inherent fluorescent properties, including FRET capability. The GFP homodimer demonstrated synergistic behaviour with the dimer being brighter than the sum of the two monomers. The structure of the GFP homodimer revealed that a water-rich interface is formed between the two monomers, with the chromophores being in close proximity with favourable transition dipole alignments. Dimerisation of GFP with Venus results in a complex displaying ~86% FRET efficiency, which is significantly below the near 100% efficiency predicted. When GFP is complexed with mCherry, FRET and mCherry fluorescence itself is essentially lost. Thus, the simple assumptions used when monitoring interactions between proteins via FP FRET may not always hold true, especially under conditions whereby the protein-protein interactions promote FP interaction.
The formation of protein complexes is central to biology, with oligomeric proteins more prevalent than monomers. The coupling of functionally and even structurally distinct protein units can lead to new functional properties not accessible by monomeric proteins alone. While such complexes are driven by evolutionally needs in biology, the ability to link normally functionally and structurally disparate proteins can lead to new emergent properties for use in synthetic biology and the nanosciences. Here we demonstrate how two disparate proteins, the haem binding helical bundle protein cytochrome b562 and the β-barrel green fluorescent protein can be combined to form a heterodimer linked together by an unnatural triazole linkage. The complex was designed using computational docking approaches to predict compatible interfaces between the two proteins. Models of the complexes where then used to engineer residue coupling sites in each protein to link them together. Genetic code expansion was used to incorporate azide chemistry in cytochrome b562 and alkyne chemistry in GFP so that a permanent triazole covalent linkage can be made between the two proteins. Two linkage sites with respect to GFP were sampled. Spectral analysis of the new heterodimer revealed that haem binding and fluorescent protein chromophore properties were retained. Functional coupling was confirmed through changes in GFP absorbance and fluorescence, with linkage site determining the extent of communication between the two proteins. We have thus shown here that is possible to design and build heterodimeric proteins that couple structurally and functionally disparate proteins to form a new complex with new functional properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.